Functional interaction between neuropeptide Y receptors and modulation of calcium channels in the rat hippocampus.

Neuropharmacology

Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, Coimbra 3004-517, Portugal.

Published: February 2003

We investigated the functional interaction between neuropeptide Y (NPY) receptors using nerve terminals and cultured rat hippocampal neurons, and we evaluated the involvement of voltage-gated Ca(2+) channels (VGCCs) in NPY receptors-induced inhibition of Ca(2+) influx and glutamate release. The KCl-evoked release of glutamate from hippocampal synaptosomes was inhibited by 1 microM NPY and this effect was insensitive to either BIBP3226 (Y1 receptor antagonist) or L-152,804 (Y5 receptor antagonist), but was sensitive to BIIE0246 (Y2 receptor antagonist). We could also pharmacologically dissect the NPY receptors activity by using Y1, Y2 and Y5 receptor agonists ([Leu(31),Pro(34)]NPY, NPY13-36, NPY (19-23)-(Gly(1),Ser(3),Gln(4),Thr(6),Ala(31),Aib(32),Gln(34))-pancreatic polypeptide (PP), respectively), and in all the cases we observed that these agonists could inhibited the KCl-induced release of glutamate. However, the selective and specific co-activation of both Y1 and Y2 or Y2 and Y5 receptors resulted in non-additive inhibition, and this effect was prevented in the presence of the Y2 antagonist, but was insensitive to the Y1 or Y5 receptor antagonist. Moreover, as we previously showed for Y1 receptors, we also observed that the activation of Y5 receptors inhibited the glutamate release in the dentate gyrus and CA3 subregion, without significant effect in the CA1 subregion of the hippocampus. The same qualitative results were obtained when we investigated the role of NPY Y1 and Y2 receptors in modulating the changes in [Ca(2+)](i) due to KCl depolarisation in cultured hippocampal neurons. The inhibitory effect of nitrendipine (L-type VGCC blocker) or omega-conotoxin GVIA (omega-CgTx; N-type VGCC blocker) was not potentiated by the simultaneous activation of Y1 or Y2 receptors. Moreover, the exocytotic release of glutamate was inhibited by omega-agatoxin IVA (omega-Aga; P-/Q-type VGCC blocker), and this VGCC blocker did not potentiate Y1, Y2 or Y5 receptor-mediated inhibition of glutamate release. Also, the effect of ionomycin in inducing the exocytotic release of glutamate from hippocampal synaptosomes was insensitive to the activation of NPY receptors. In the present paper, we identified a role for NPY Y1, Y2 and Y5 receptors in modulating the exocytotic release of glutamate and the [Ca(2+)](i) changes in the rat hippocampus. In conditions of co-activation, there appears to exist a physiological cross-talk between Y1 and Y2 and also between Y2 and Y5 receptors, in which Y2 receptors play a predominant role. Moreover, we also show that Y1 and Y2 receptors exert their inhibitory action by directly modulating L-, N-, and P-/Q-type VGCCs, whereas the inhibition of glutamate release mediated by the Y5 receptors seems to involve P-/Q-type VGCCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0028-3908(02)00382-9DOI Listing

Publication Analysis

Top Keywords

npy receptors
20
release glutamate
20
glutamate release
16
receptor antagonist
16
vgcc blocker
16
receptors
14
exocytotic release
12
glutamate
9
release
9
functional interaction
8

Similar Publications

Background: Genetic variations have emerged as crucial players in the etiology of Alzheimer's disease (AD), and they serve for a better understanding of the disease mechanisms; yet the specific roles of these genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Therefore, we generated zebrafish models for AD variants to analyze the in depth molecular and biological functions of these variants.

View Article and Find Full Text PDF

Differential suppression of hippocampal network oscillations by neuropeptide Y.

Neuropharmacology

December 2024

Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.

Neuropeptide Y (NPY) is the most abundant neuropeptide in the brain. It exerts anxiolytic and anticonvulsive actions, reduces stress and suppresses fear memory. While its effects at the behavioral and cellular levels have been well studied, much less is known about the modulation of physiological activity patterns at the network level.

View Article and Find Full Text PDF

Transcriptomic analysis of the HPT axis in a model of oligoasthenozoospermia induced by Adenine in rats.

Exp Mol Pathol

December 2024

College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China. Electronic address:

Male infertility is most commonly caused by oligozoospermia, and its pathogenesis is still poorly understood at the molecular level. This study used RNA sequencing (RNA-Seq) technology to identify candidate genes and regulatory pathways that regulate semen quality in the hypothalamic, pituitary, and testicular tissues of healthy rats and Adenine-induced oligozoospermia model rats. Semen quality testing and histological analysis of testicular tissues were performed on both groups of rats.

View Article and Find Full Text PDF

Neuropeptide Y and Pain: Insights from Brain Research.

ACS Pharmacol Transl Sci

December 2024

Department of Pharmacology and Therapeutics, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, United States.

Neuropeptide Y (NPY) is a highly conserved neuropeptide with widespread distribution in the central nervous system and diverse physiological functions. While extensively studied for its inhibitory effects on pain at the spinal cord level, its role in pain modulation within the brain remains less clear. This review aims to summarize the complex landscape of supraspinal NPY signaling in pain processing.

View Article and Find Full Text PDF

Changes in gene expression in carps' brains over time following acute stressors has not been studied in detail so far. Consequently, a stress trial with juvenile common carp was conducted to investigate transcriptomic differences in four brain parts in response to acute negative stressors and feed reward, focusing on appetite-related genes, serotonergic and dopaminergic pathways, and other involved systems, at 30, 60, and 90 min after treatments. The treatments showed pronounced effects on the gene expression patterns across brain parts compared to control fish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!