4-hydroxynonenal (4HNE) is a major product of peroxidative membrane lipid destruction and exerts a variety of deleterious actions through formation of covalent adducts with cellular nucleophiles. Consequently, a number of cellular enzyme systems exist that are capable of detoxifying this reactive aldehyde by oxidation, reduction, or conjugation with glutathione. In this investigation we characterize the multidrug resistance-associated protein 2 (MRP2) as the primary transmembrane transport protein in hepatocytes responsible for extracellular export of 4HNE-glutathione conjugate (HNE-SG) from the intracellular site of its formation. Suspensions of freshly isolated hepatocytes (10(6) cells/ml) prepared from either wild-type (WT) Wistar rats or TR(-) rats possessing a mutated Mrp2 gene were incubated with 4HNE (50 nmol/10(6) cells). The formation of 4HNE metabolites, 4-hydroxynonenoic acid (HNA) and HNE-SG, was quantified in the intracellular and extracellular fractions. These studies demonstrated that freshly isolated hepatocytes from both WT and TR(-) rats formed and exported the oxidized metabolite (HNA) to similar extents. Likewise, both populations of hepatocytes displayed nearly identical rates of glutathione conjugation with 4HNE. However, the rate of HNE-SG export from TR(-) hepatocytes was approximately fourfold less than that of WT hepatocytes. In TR(-) hepatocytes, HNE-SG accumulated and remained predominantly intracellular throughout the time course, suggesting an absence of compensatory export by other hepatocellular transporters. In conclusion, these data demonstrate that although WT and TR(-) hepatocytes are similar in their conjugative and oxidative metabolism of 4HNE, export of 4HNE-SG is mediated by the MRP2 transporter, a transport system distinct from that involved in HNA efflux.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-9861(03)00002-xDOI Listing

Publication Analysis

Top Keywords

tr- hepatocytes
12
multidrug resistance-associated
8
resistance-associated protein
8
hepatocytes
8
freshly isolated
8
isolated hepatocytes
8
tr- rats
8
hepatocytes tr-
8
4hne
5
tr-
5

Similar Publications

The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data.

View Article and Find Full Text PDF

A Novel Machine Perfusion System for Enhancing Hepatic Microcirculation Perfusion.

Artif Organs

December 2024

Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Background: Machine perfusion is a promising strategy for safeguarding liver transplants donated after cardiac death (DCD). In this study, we developed and validated a novel machine perfusion approach for mitigating risk factors and salvaging severe DCD livers.

Methods: A novel hypothermic oxygenated perfusion (HOPE) system was developed, incorporating two pumps and an elastic water sac to emulate the functionality of the cardiac cycle.

View Article and Find Full Text PDF

Post-surgical biliary complications increase morbidity, mortality, and healthcare utilization. Early detection and management of biliary complications is thus of great clinical importance. Even though the overall risk for biliary complications is low after laparoscopic cholecystectomy, post-cholecystectomy biliary complications are frequently encountered in clinical practice as laparoscopic cholecystectomy is the most common surgical procedure performed in the United States.

View Article and Find Full Text PDF

Group 1 innate lymphoid cells protect liver transplants from ischemia-reperfusion injury via an interferon-γ-mediated pathway.

Am J Transplant

December 2024

The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Department of Surgery, Medical University of South Carolina, Charleston, SC 29425. Electronic address:

As important immune regulatory cells, whether innate lymphoid cells (ILCs) are involved in liver transplantation (LT) remains unclear. In a murine orthotopic LT model, we dissected roles of ILCs in liver ischemia-reperfusion injury (IRI). Wild type (WT) grafts suffered significantly higher IRI in Rag2-γc double knockout (DKO) than Rag2 KO recipients, in association with downregulation of group 1 ILCs genes, including IFN-γ.

View Article and Find Full Text PDF

The role of ferroptosis-related non-coding RNA in liver fibrosis.

Front Cell Dev Biol

December 2024

Department of Emergency Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.

Liver fibrosis represents a reversible pathophysiological process, caused by chronic inflammation stemming from hepatocyte damage. It delineates the initial stage in the progression of chronic liver disease. This pathological progression is characterized by the excessive accumulation of the extracellular matrix (ECM), which leads to significant structural disruption and ultimately impairs liver function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!