The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2003.03381.xDOI Listing

Publication Analysis

Top Keywords

pyrococcus abyssi
8
pyrococcus
5
integrated analysis
4
analysis genome
4
genome hyperthermophilic
4
hyperthermophilic archaeon
4
archaeon pyrococcus
4
abyssi
4
abyssi hyperthermophilic
4
hyperthermophilic euryarchaeon
4

Similar Publications

Loop-mediated isothermal amplification (LAMP) is a detection method widely used in pathogen detection and clinical diagnosis. Nevertheless, it is highly constrained by thermal stability, catalytic activity, and resistance to inhibitors of Bst DNA polymerase. In this study, a novel DNA polymerase was characterized from Clostridium thermocellum, exhibiting potential in LAMP detection.

View Article and Find Full Text PDF

High thermostability of the enzymes is one of the distinguishing characteristics that increase their industrial utility. In the current research work, rigidifying the flexible amino acid residues of a lysophospholipase (Pa-LPL) from Pyrococcus abyssi was used as a protein engineering approach to improve its thermostability. A truncated variant of Pa-LPL (t-LPL∆12) was constructed by trimming its 12 amino acid residues (50-61) through overlap extension PCR.

View Article and Find Full Text PDF

Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability.

View Article and Find Full Text PDF

The genomic screening of hyper-thermophilic Pyrococcus abyssi showed uncharacterized novel α-amylase sequences. Homology modelling analysis revealed that the α-amylase from P. abyssi consists of an N-terminal GH57 catalytic domain, α-amylase central, and C-terminal domain.

View Article and Find Full Text PDF

Alpha amylase belonging to starch hydrolyzing enzymes has significant contributions to different industrial processes. The enzyme production through recombinant DNA technology faces certain challenges related to their expression, solubility and purification, which can be overcome through fusion tags. This study explored the influence of SUMO, a protein tag reported to enhance the solubility and stability of target proteins when fused to the N-terminal of the catalytic domain of amylase from Pyrococcus abyssi (PaAD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!