Theoretical and analytical characterization of a flow-through permeation liquid membrane with controlled flux for metal speciation measurements.

Anal Chem

CABE, Department of Inorganic, Analytical and Applied Chemistry, Sciences II, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland.

Published: February 2003

Speciation measurements with the permeation liquid membrane (PLM) technology require necessarily a good control of the flux of the analyte. In this perspective, a PLM-based multichannel flow-through cell has been designed. The first objective of this study has been to adapt the classical Levich model commonly used for electrochemical flow devices to the characteristic geometry of the PLM cell. In the latter case and contrary to the Levich model, the effects of the channel lateral walls on the flux of active species through the membrane have to be taken into account. The problem was solved by considering the existence of two parabolic Poiseuille profiles perpendicular to each other and developing along the fluid motion. The theoretical results obtained match satisfactorily with experimental data. The analytical study of this PLM system has been performed with copper(II) ions as test species and has shown that the preconcentration factor is (1) linear at least for preconcentration times of < or = 120 min, (2) reproducible on the same membrane as well as on different membranes, and (3) independent of the initial test metal ion concentration in the sample solution. The capabilities of this cell to determine metal speciation by considering lability of complexes and the flux of metal at variable flow rates of the test solution is also discussed by means of Cu(II)/sulfosalicylic complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac020486xDOI Listing

Publication Analysis

Top Keywords

permeation liquid
8
liquid membrane
8
flux metal
8
metal speciation
8
speciation measurements
8
levich model
8
theoretical analytical
4
analytical characterization
4
characterization flow-through
4
flow-through permeation
4

Similar Publications

Low Molecular Weight Biobased Aromatics from Pyrolysis Liquids Using Zeolites: Yield Improvements by Using Pyrolysis Oil Fractions.

ACS Omega

January 2025

Green Chemical Reaction Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions.

View Article and Find Full Text PDF

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.

View Article and Find Full Text PDF

Permeation Enhancer in Microemulsions and Microemulsion-Based Gels: A Comparison of Diethylene Glycol Monoethyl Ether and Oleyl Alcohol.

Gels

January 2025

Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 3000 Arlington Ave, Toledo, OH 43614, USA.

Microemulsions have been commonly used with various permeation enhancers to improve permeability through the skin. The purpose of this study was to compare the release and permeation ability of two commonly used permeation enhancers-diethylene glycol monoethyl ether (DGME) and oleyl alcohol-by the changes in oil composition, the addition of a gelling agent, and water content using ibuprofen as a model drug. Four microemulsions were formulated, selection was based on ternary phase diagrams, and physicochemical properties were evaluated.

View Article and Find Full Text PDF

The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!