Keloids are proliferative dermal growths representing a pathological wound-healing response. We report high proliferation rates in normal (NF) and keloid-derived fibroblasts (KF) cocultured with keloid-derived keratinocytes (KK). IGF binding protein (IGFBP)-3 mRNA and secreted IGFBP-3 in conditioned media were increased in NF cocultured with KK compared with NF but markedly reduced in KF cocultured with KK or normal keratinocytes (NK). IGFBP-2 and IGFBP-4 mRNA levels were elevated, whereas IGFBP-5 mRNA was decreased in KF cocultured with KK or NK. Significant increases in IGFBP-2 and -4 mRNA in KF cocultured with KK did not correlate with protein secretion. Downstream IGF signaling cascade components, phospho-Raf, phospho-MEK1/2, phospho-MAPK, PI-3 kinase, phospho-Akt, and phospho-Elk-1, were elevated in KF cocultured with KK. Addition of recombinant human IGFBP-3 or antibodies against IGF-I or IGF-IR significantly inhibited proliferation of KF. The bioavailability of IGF-I may be related to the levels of IGFBP-3 produced, which in turn influences KF proliferation, suggesting that modulation of IGF-I, IGF-IR, and IGFBP-3, individually or in combination, may represent novel approaches to the treatment of keloids.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00350.2002DOI Listing

Publication Analysis

Top Keywords

keloid-derived keratinocytes
8
igf-i igf-ir
8
cocultured
6
igfbp-3
5
role igf
4
igf system
4
system mitogens
4
mitogens induction
4
induction fibroblast
4
proliferation
4

Similar Publications

Background: Keloids are disfiguring, fibrotic scar-like lesions that are challenging to treat and commonly recur after therapy. A deeper understanding of the mechanisms driving keloid formation is necessary for the development of more effective therapies. Reduced vitamin D receptor (VDR) expression has been observed in keloids, implicating vitamin D signaling in keloid pathology.

View Article and Find Full Text PDF

Keloids are a fibroproliferative skin disorder that develops in people of all ages. Keloids exhibit some cancer-like behaviors, with similar genetic and epigenetic modifications in the keloid microenvironment. The keloid microenvironment is composed of keratinocytes, fibroblasts, myofibroblasts, vascular endothelial cells, immune cells, stem cells and collagen fibers.

View Article and Find Full Text PDF

Animal Models for Studies of Keloid Scarring.

Adv Wound Care (New Rochelle)

February 2019

Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, Ohio.

Keloid scarring is a disfiguring fibroproliferative disorder that can significantly impair the quality of life in affected individuals. The mechanisms that initiate keloid scarring are incompletely understood, and keloids remain one of the most challenging skin conditions to treat. Keloids are unique to humans; thus, the lack of adequate animal models has hindered research efforts aimed at prevention and effective therapeutic intervention.

View Article and Find Full Text PDF

Monocytes co-cultured with reconstructed keloid and normal skin models skew towards M2 macrophage phenotype.

Arch Dermatol Res

October 2019

Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands.

Several abnormalities have been reported in the peripheral blood mononuclear cells of keloid-forming patients and particularly in the monocyte cell fraction. The goal of this in vitro study was to determine whether monocytes from keloid-prone patients contribute to the keloid phenotype in early developing keloids, and whether monocyte differentiation is affected by the keloid microenvironment. Therefore, keloid-derived keratinocytes and fibroblasts were used to reconstruct a full thickness, human, in vitro keloid scar model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!