Background: The role of intrapartum asphyxia in neonatal encephalopathy and seizures in term infants is not clear, and antenatal factors are being implicated in the causal pathway for these disorders. However, there is no evidence that brain damage occurs before birth. We aimed to test the hypothesis that neonatal encephalopathy, early neonatal seizures, or both result from early antenatal insults.

Methods: We used brain MRI or post-mortem examination in 351 fullterm infants with neonatal encephalopathy, early seizures, or both to distinguish between lesions acquired antenatally and those that developed in the intrapartum and early post-partum period. We excluded infants with major congenital malformations or obvious chromosomal disorders. Infants were divided into two groups: those with neonatal encephalopathy (with or without seizures), and evidence of perinatal asphyxia (group 1); and those without other evidence of encephalopathy, but who presented with seizures within 3 days of birth (group 2).

Findings: Brain images showed evidence of an acute insult without established injury or atrophy in 197 (80%) of infants in group 1, MRI showed evidence of established injury in only 2 infants (<1%), although tiny foci of established white matter gliosis, in addition to acute injury, were seen in three of 21 on post-mortem examination. In group 2, acute focal damage was noted in 62 (69%) of infants. Two (3%) also had evidence of antenatal injury.

Interpretation: Although our results cannot exclude the possibility that antenatal or genetic factors might predispose some infants to perinatal brain injury, our data strongly suggest that events in the immediate perinatal period are most important in neonatal brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(03)12658-XDOI Listing

Publication Analysis

Top Keywords

neonatal encephalopathy
20
term infants
8
infants neonatal
8
encephalopathy seizures
8
encephalopathy early
8
established injury
8
infants
7
neonatal
6
encephalopathy
6
seizures
5

Similar Publications

Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Of note, prenatal Zika infection can cause a spectrum of neurodevelopmental disorders, including congenital Zika syndrome.

View Article and Find Full Text PDF

The impact of clinical seizures and adverse brain MRI patterns in neonates with hypoxic-ischemic encephalopathy and abnormal neurodevelopment.

Clinics (Sao Paulo)

January 2025

Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Electronic address:

Introduction: This study aimed to investigate the associations among seizures, clinical characteristics, and brain injury on Magnetic Resonance Imaging (MRI) in infants with Hypoxic Ischemic Encephalopathy (HIE), and to determine whether these findings can predict unfavorable neurodevelopmental outcomes.

Method: Clinical and electrographic seizures were assessed by amplitude-integrated electroencephalogram, and the extent of brain injury was evaluated by using MRI. At 12‒24 months of age, developmental impairment or death was assessed.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The First Affiliated Hospital of USTC, Neurology Department, Hefei, China.

Background: Mounting evidence suggests an increase in angiogenesis in the Alzheimer's disease (AD) brain, but the role of this process in AD remains uncertain. The present study aims to explore the association between CSF angiogenic factors that promote angiogenesis and cerebrovascular lesions as well as neurodegeneration.

Method: The cross-sectional study included 104 individuals with a CDR score of ≤ 0.

View Article and Find Full Text PDF

Therapeutic hypothermia in preterm infants under 36 weeks: Case series on outcomes and brain MRI findings.

Eur J Pediatr

January 2025

Neonatology Department. Hospital Sant Joan de Déu, Center for Maternal Fetal and Neonatal Medicine. Neonatal Brain Group, Universitat de Barcelona. Hospital Clínic, Universitat de Barcelona. BCNatal - Barcelona, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.

Purpose: Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of neonatal brain injury. Therapeutic hypothermia (TH) is the standard treatment for term neonates, but its safety and efficacy in neonates < 36 weeks gestational age (GA) remains unclear. This case series aimed to evaluate the outcomes of preterm infants with HIE treated with TH.

View Article and Find Full Text PDF
Article Synopsis
  • Neonatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of death and disability in newborns, and caffeine has shown promise in mitigating its effects.
  • In a neonatal rat model, caffeine administration post-injury reduced brain damage and inflammation compared to controls, highlighting its potential benefits.
  • The study found that caffeine influences the AMPK/mTOR pathway, suggesting that targeting this pathway could enhance neuroprotection and improve outcomes for HIE, especially in regions lacking sufficient resources for treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!