A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of microbial communities from coastal waters using microarrays. | LitMetric

Characterization of microbial communities from coastal waters using microarrays.

Environ Monit Assess

Department of Epidemiology and Preventive Medicine, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA.

Published: May 2003

AI Article Synopsis

  • Molecular methods, like DNA probes and microarrays, were utilized to study pathogenic Vibrio species and their seasonal changes in the Chesapeake Bay.
  • Researchers characterized microbial communities by amplifying the 16S rDNA gene from biofilm samples, discovering new Shewanella species and unknown bacteria in oysters.
  • The development of microarrays aims to track bacterial species fluctuations and evaluate environmental health, ultimately assessing the risks of human illness related to water and shellfish consumption.

Article Abstract

Molecular methods, including DNA probes, were used to identify and enumerate pathogenic Vibrio species in the Chesapeake Bay; our data indicated that Vibrio vulnificus exhibits seasonal fluctuations in number. Our work included a characterization of total microbial communities from the Bay; development of microarrays that identify and quantify the diversity of those communities; and observation of temporal changes in those communities. To identify members of the microbial community, we amplified the 16S rDNA gene from community DNA isolated from a biofilm sample collected from the Chesapeake Bay in February, 2000. The resultant 75 sequences were 95% or more similar to 7 species including two recently described Shewanella species, baltica and frigidimarina, that have not been previously isolated from the Chesapeake. When the genera of bacteria from biofilm after culturing are compared to those detected by subcloning amplified 16S fragments from community DNA, the cultured sample exhibited a strong bias. In oysters collected in February, the most common bacteria were previously unknown. Based on our 16S findings, we are developing microarrays to detect these and other microbial species in these estuarine communities. The microarrays will detect each species using four distinct loci, with the multiple loci serving as an internal control. The accuracy of the microarray will be measured using sentinel species such as Aeromonas species, Escherichia coli, and Vibrio vulnificus. Using microarrays, it should be possible to determine the annual fluctuations of bacterial species (culturable and non-culturable, pathogenic and non-pathogenic). The data may be applied to understanding patterns of environmental change; assessing the "health" of the Bay; and evaluating the risk of human illness associated with exposure to and ingestion of water and shellfish.

Download full-text PDF

Source

Publication Analysis

Top Keywords

microbial communities
8
species
8
chesapeake bay
8
vibrio vulnificus
8
amplified 16s
8
community dna
8
communities
5
microarrays
5
characterization microbial
4
communities coastal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!