The extent of degradation of benthic communities of the Chesapeake Bay was determined by applying a previously developed benthic index of biotic integrity at three spatial scales. Allocation of sampling was probability-based allowing areal estimates of degradation with known confidence intervals. The three spatial scales were: (1) the tidal Chesapeake Bay; (2) the Elizabeth River watershed: and (3) two small tidal creeks within the Southern Branch of the Elizabeth River that are part of a sediment contaminant remediation effort. The areas covered varied from 10(-1) to 10(4) km2 and all were sampled in 1999. The Chesapeake Bay was divided into ten strata, the Elizabeth River into five strata and each of the two tidal creeks was a single stratum. The determination of the number and size of strata was based upon consideration of both managerially useful units for restoration and limitations of funding. Within each stratum 25 random locations were sampled for benthic community condition. In 1999 the percent of the benthos with poor benthic community condition for the entire Chesapeake Bay was 47% and varied from 20% at the mouth of the Bay to 72% in the Potomac River. The estimated area of benthos with poor benthic community condition for the Elizabeth River was 64% and varied from 52-92%. Both small tidal creeks had estimates of 76% of poor benthic community condition. These kinds of estimates allow environmental managers to better direct restoration efforts and evaluate progress towards restoration. Patterns of benthic community condition at smaller spatial scales may not be correctly inferred from larger spatial scales. Comparisons of patterns in benthic community condition across spatial scales, and between combinations of strata, must be cautiously interpreted.

Download full-text PDF

Source

Publication Analysis

Top Keywords

benthic community
28
spatial scales
24
community condition
24
chesapeake bay
20
elizabeth river
16
tidal creeks
12
poor benthic
12
benthic
9
three spatial
8
small tidal
8

Similar Publications

The western Indian continental shelf (eastern Arabian Sea) exhibits contrasting biogeochemical features. This area becomes highly productive due to summer monsoon-driven coastal upwelling in the south and winter monsoon-induced convective mixing in the north. Additionally, in the northern self, the eastern boundary of the Oxygen Minimum Zone (OMZ) persists but is absent in the south.

View Article and Find Full Text PDF

Mountain environments, as biodiversity hotspots, are subject to numerous anthropological pressures. In mountain areas, a common threat to stream biocenoses is the timber industry. Timber industry increases the fine sediment input into the mountain rivers; furthermore, timber transport requires the construction of low-water crossings across streams.

View Article and Find Full Text PDF

Identification of plant-based spilled oils using direct analysis in real-time-time-of-flight mass spectrometry with hydrophobic paper sampling.

Environ Monit Assess

January 2025

Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.

Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.

View Article and Find Full Text PDF

How hydrodynamic conditions drive the regime shift towards a bacterial state with lower carbon emissions in river bends.

Environ Res

January 2025

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China.

Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover.

View Article and Find Full Text PDF

Coastal eutrophication transforms shallow micro-benthic reef communities.

Sci Total Environ

January 2025

Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.

Article Synopsis
  • Coral reefs worldwide are suffering from coastal eutrophication, leading to decreased coral cover and increased harmful organisms like algae and invertebrates.
  • The study focuses on how micro-benthic communities, specifically foraminifera, diatoms, and bacteria, are influenced by turbidity associated with eutrophication in the Spermonde Archipelago, using environmental DNA analysis.
  • Findings indicate that shallower reef flat communities are much more affected by turbidity than deeper reef slope communities, with foraminifera and diatom ESVs serving as indicators of varying turbidity levels, thus highlighting the influence of local environmental conditions on these micro-benthic communities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!