Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study was to investigate the effect of N-phenacyl-4,5-dimethylthiazolium bromide (DMPTB), an advanced glycation end product (AGE) cross-link breaker, on lens protein cross-links formed in vitro and in vivo. DMPTB was synthesized and its structure confirmed by its NMR spectrum. To show whether DMPTB can inhibit AGE cross-linking, recombinant human alphaA-crystallin was glycated with glucose-6-phosphate (G6P) in the presence and absence of DMPTB. Reversal of the already formed cross-links was studied by treating pre-glycated alphaA-crystallin with DMPTB. The ability of DMPTB to cleave in vivo formed cross-links was ascertained by treating water-insoluble protein fractions from diabetic human lenses with this compound. Glycation of alphaA-crystallin with G6P showed several high molecular weight (HMW) protein bands on the SDS-PAGE gel; DMPTB inhibited the formation of these HMW proteins. Molecular sieve HPLC confirmed the inhibition of formation of larger aggregates not separated by SDS-PAGE. Treatment of pre-glycated alphaA-crystallin with DMPTB gave evidence for the degradation of the already formed cross-linked HMW aggregates. Both molecular sieve HPLC and reverse-phase HPLC of the water-insoluble protein fractions from two diabetic human lenses showed that DMPTB could degrade a major portion of the cross-linked HMW aggregates to lower molecular weight proteins. This suggests that the cross-linked proteins in human lenses are formed predominantly by the advanced glycation process and cross-link breakers like DMPTB may have application for the intervention of protein cross-linking in the eye lens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1021660105893 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!