Need for cytochrome bc1 complex for dissimilatory nitrite reduction of Pseudomonas aeruginosa.

Biosci Biotechnol Biochem

Department of Biotechnology, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.

Published: January 2003

Pseudomonas aeruginosa strains deficient in the genes for cytochrome c1, a subunit of the cytochrome bc1 complex, or the tetraheme membrane protein NapC, which is similar to NirT of Pseudomonas stutzeri, were constructed and their growth was investigated. The cytochrome c1 mutant could not grow under anaerobic conditions with nitrite as an electron acceptor and did not reduce nitrite in spite of its producing active nitrite reductase. NirM (cytochrome c551) and azurin, which are the direct electron donors for nitrite reductase, were reduced by succinate in the presence of the membrane fraction from the wild-type strain as a mediator but not in the presence of that from the cytochrome c1 mutant. These results indicated that cytochrome bc1 complex was necessary for electron transfer from the membrane quinone pool to nitrite reductase. The NapC mutant grew anaerobically at the expense of nitrite, indicating that NapC was not necessary for nitrite reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.67.121DOI Listing

Publication Analysis

Top Keywords

cytochrome bc1
12
bc1 complex
12
nitrite reductase
12
nitrite
8
nitrite reduction
8
pseudomonas aeruginosa
8
cytochrome mutant
8
cytochrome
7
complex dissimilatory
4
dissimilatory nitrite
4

Similar Publications

Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway.

J Integr Plant Biol

January 2025

Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.

Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.

View Article and Find Full Text PDF

The study investigated the impact of low-dose sodium nitrite on yak meat color and mitochondrial functional characteristics during the wet curing. The results showed that sodium nitrite significantly enhanced the redness ( value) of yak meat by increasing the activities of mitochondrial complexes I, II, III and IV, which are critical for electron transport and aerobic respiration. Additionally, sodium nitrite reduced mitochondrial swelling and membrane permeability, and slowed the production of lipid oxidation products, indicating protective effects against mitochondrial damage and preserving mitochondrial integrity.

View Article and Find Full Text PDF

Background: Vietnam and its region are regarded as an ixodid tick biodiversity hotspot for at least two genera: Haemaphysalis and Dermacentor. To contribute to our knowledge on the tick fauna of this country, ticks from these two genera as well as an Ixodes species were analyzed morphologically and their molecular-phylogenetic relationships were examined in taxonomic and geographical contexts.

Methods: For this study, seven Haemaphysalis sp.

View Article and Find Full Text PDF

Picoxystrobin causes mitochondrial dysfunction in earthworms by interfering with complex enzyme activity and binding to the electron carrier cytochrome c protein.

Environ Pollut

January 2025

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China. Electronic address:

Picoxystrobin (PICO) poses a great threat to earthworms due to its widespread use in agriculture and its stability in soil. Mitochondria may be a sensitive target organ for the toxic effects of PICO on worms. Therefore, evaluating the effect of PICO on mitochondria can further understand the toxic mechanism of PICO to earthworms.

View Article and Find Full Text PDF

Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!