Mouse lines divergently selected for heat loss were evaluated for correlated responses in the hypothalamic transcriptome. High (MH) heat loss mice have approximately 50% greater heat loss, approximately 35% less body fat, approximately 20% greater feed intake, approximately 100% greater locomotor activity levels, and higher core body temperature compared with low (ML) heat loss mice. We evaluated hypothalamic expression between inbred lines derived from MH and ML lines (IH and IL, respectively) using cDNA microarrays and selected genes previously isolated in a large differential-display PCR experiment. Northern analysis was used to confirm differences, revealing higher hypothalamic mRNA expression of oxytocin (Oxt) and tissue inhibitor of metalloproteinase 2 (Timp-2) in the IH line. Real-time PCR assays were developed for Oxt, Timp-2, and ribosomal protein L3 (Rpl3, previously found to be upregulated in IL) and confirmed differential expression of these genes with potential physiological relevance in energy balance. These results provide information on correlated responses in the transcriptome of mice selected for high and low energy expenditure and reveal new information regarding genetic regulation of energy balance.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00184.2002DOI Listing

Publication Analysis

Top Keywords

heat loss
20
divergently selected
8
selected heat
8
correlated responses
8
loss mice
8
energy balance
8
heat
5
loss
5
evaluation hypothalamic
4
hypothalamic gene
4

Similar Publications

An animal's body mass is said to be indirectly related to its rate of heat loss; that is, smaller animals with higher surface area to volume tend to lose heat faster than larger animals. Thus, thermoregulation should be related to body size, however, generalizable patterns are still unclear. Domestic dogs are a diverse species of endothermic mammals, including a 44-fold difference in body size.

View Article and Find Full Text PDF

Nanosecond Nanothermometry in an Electron Microscope.

Nano Lett

January 2025

University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.

Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.

View Article and Find Full Text PDF

The energy-exergy and environ-economic (4E) analysis was conducted on a solar still with and without a hybrid thermal energy storage system (TESS) and a solar air heater. The proposed solar still was modified by integrating a rectangular aluminium box filled with paraffin wax and black gravel as the TESS and coupled with a solar air heater. Paraffin wax was selected due to its widespread availability and proven effectiveness in accelerating desalination, improving process uniformity, and maintaining optimal temperature levels.

View Article and Find Full Text PDF

WF2020 isolated from fermented pickles promotes longevity and health in JNK and p38 MAPK pathways.

Food Funct

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.

, a potential probiotic for use in food and feed production, can exert anti-aging effects in a strain-specific manner. However, the molecular mechanisms underlying its anti-aging effects remain poorly understood. This study explored the effects of WF2020 (WF2020), isolated from Chinese fermented pickles, on longevity and health and investigated the underlying mechanisms in .

View Article and Find Full Text PDF

Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!