The gene encoding cytochrome c nitrite reductase (NrfA) from Desulfovibrio desulfuricans ATCC 27774 was sequenced and the crystal structure of the enzyme was determined to 2.3-A resolution. In comparison with homologous structures, it presents structural differences mainly located at the regions surrounding the putative substrate inlet and product outlet, and includes a well defined second calcium site with octahedral geometry, coordinated to propionates of hemes 3 and 4, and caged by a loop non-existent in the previous structures. The highly negative electrostatic potential in the environment around hemes 3 and 4 suggests that the main role of this calcium ion may not be electrostatic but structural, namely in the stabilization of the conformation of the additional loop that cages it and influences the solvent accessibility of heme 4. The NrfA active site is similar to that of peroxidases with a nearby calcium site at the heme distal side nearly in the same location as occurs in the class II and class III peroxidases. This fact suggests that the calcium ion at the distal side of the active site in the NrfA enzymes may have a similar physiological role to that reported for the peroxidases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M211777200 | DOI Listing |
Bioresour Technol
December 2024
Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States.
Partial denitrification coupled with anammox is a promising approach for sustainable nitrogen removal from wastewater. However, this coupling can be influenced by hydrazine (NH) released by anammox bacteria. This study aimed to reveal how NH regulates partial denitrification.
View Article and Find Full Text PDFPhytomedicine
December 2024
Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. Electronic address:
IUCrJ
January 2025
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, USA.
The upgrade of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France to an Extremely Brilliant Source (EBS) is expected to enable time-resolved synchrotron serial crystallography (SSX) experiments with sub-millisecond time resolution. ID29 is a new beamline dedicated to SSX experiments at ESRF-EBS. Here, we report experiments emerging from the initial phase of user operation at ID29.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China. Electronic address:
As nitrite, sulfite has been used in food preservation for centuries but how it inhibits bacterial growth remains underexplored. To address this issue, in this study, we set out to test if cytochrome (cyt) c proteins protect bacteria from the damage of certain reactive sulfur species (RSS) because they do so in the case of reactive nitrogen species (RNS). We show that some reactive sulfur species, such as sulfite and peroxymonosulfate (PMS), inhibit growth of bacterial strains devoid of cytochrome (cyt) c proteins.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Institute of Chemistry, University of Tartu, 14a Ravila St., 50411, Tartu, Estonia.
Bioelectrochemical anaerobic ammonium oxidation (anammox) systems allow eco-friendly removal of nitrogen from reject wastewater coming from biogas processing as the anammox bacteria have previously shown to have c-type cytochromes acting in the extracellular electron transport (EET) mechanism between the bacteria and electrode. The anammoxosome compartment present in anammox bacteria features a highly curved membrane and contains tubular structures along with electron-dense particles that contain iron, which could enhance the process of EET and enhance nitrogen removal by properly applied potentials. In this study, nitrogen removal was investigated in the electrostimulated anammox nitrogen removal (EANR) cells operated comparatively at open circuit and at applied potentials of - 300 mV, - 500 mV, and - 700 mV vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!