We determined thermodynamic and kinetic parameters for the antigen-antibody interaction using a group of anti-(4-hydroxy-3-nitrophenyl)acetyl monoclonal antibodies whose differences in amino acid sequences had arisen only from somatic hypermutation. These monoclonal antibodies were considered to have originated from a common ancestor clone and to represent progression along the affinity maturation pathway. The kinetic measurements showed that both association and dissociation rate constants of the antigen-antibody interaction decreased during maturation. Thermodynamic measurements revealed that an increase in affinity was obtained by an increase in entropy without any significant change in enthalpy. These results suggested that the mechanism for the antigen-antibody interaction shifted from a "zipper" type to a "lock-and-key" type during antibody evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0161-5890(02)00282-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!