Structural considerations dictate that asparagine alone may be converted thermally into acrylamide through decarboxylation and deamination reactions. However, the main product of the thermal decomposition of asparagine was maleimide, mainly due to the fast intramolecular cyclization reaction that prevents the formation of acrylamide. On the other hand, asparagine, in the presence of reducing sugars, was able to generate acrylamide in addition to maleimide. Model reactions were performed using FTIR analysis, and labeling studies were carried out using pyrolysis-GC/MS as an integrated reaction, separation, and identification system to investigate the role of reducing sugars. The data have indicated that a decarboxylated Amadori product of asparagine with reducing sugars is the key precursor of acrylamide. Furthermore, the decarboxylated Amadori product can be formed under mild conditions through the intramolecular cyclization of the initial Schiff base and formation of oxazolidin-5-one. The low-energy decarboxylation of this intermediate makes it possible to bypass the cyclization reaction, which is in competition with thermally induced decarboxylation, and hence promote the formation of acrylamide in carbohydrate/asparagine mixtures. Although the decarboxylated Amadori compound can be formed under mild conditions, it requires elevated temperatures to cleave the carbon-nitrogen covalent bond and produce acrylamide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf0261506 | DOI Listing |
Calcif Tissue Int
January 2025
Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, 49000, Angers, France.
Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.
View Article and Find Full Text PDFSci Rep
January 2025
Golestan Research Center of Gastroentrology and Hepatology & Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
Children are highly sensitive to toxins which can damage their organs and lead to death. Investigating the main causes of intoxication could reduce mortality and morbidity in children. In this cross-sectional study, the documents of all poisoned patients (214 cases) admitted to the emergency department of Taleghani children`s Hospital between April 2020 and 2023 were investigated.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Ethnopharmacological Relevance: Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.
View Article and Find Full Text PDFFood Chem
December 2024
Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel. Electronic address:
Durian (Durio zibethinus Murr.) is a seasonal fruit with a short harvesting period, requiring postharvest processing such as cutting, peeling, freeze-drying, cooking, and frying to enhance its shelf life and nutritional quality. In this study, fresh Monthong durian (MTD), MTD Sticks, MTD Cake, and MTD Chips were analyzed for polyphenols, phenolic acids, tannins, flavonoids and thermal stability.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India.
Purpose Of Review: The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets.
Recent Findings: Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!