Pyrolysis-gas (Py-GC) chromatography was used to characterize extractable lipids from Bt and non-Bt maize shoots and soils collected at time of harvesting. Py-GC-MS (mass spectrometry) showed that the concentrations of total alkenes identified in non-Bt shoots and soils were 47.9 and 21.3% higher than in Bt maize shoots and soils, respectively. N-alkanes identified were of similar orders of magnitude in Bt and non-Bt maize shoots, but were 28.6% higher in Bt than in non-Bt soils. Bt maize shoots contained 29.7% more n-fatty acids than non-Bt maize shoots, whereas the concentrations of n-fatty acids in Bt soils were twice as high as those in non-Bt soils. Concentrations of unsaturated fatty acids in Bt maize shoots were 22.1% higher than those in non-Bt maize shoots, while concentrations of unsaturated fatty acids were 22.5% higher in non-Bt than in Bt soils. The cumulative CO2-C evolved from soils under Bt and non-Bt crops was 30.5% lower under Bt as compared to non-Bt crops, whereas when maize shoots were added to Bt and non-Bt soils, the decrease in CO2-C evolved were 16.5 and 23.6%, respectively. Our data showed that the cultivation of Bt maize significantly increased the saturated to unsaturated lipid ratios in soils which appeared to negatively affect microbial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1081/PFC-120018450DOI Listing

Publication Analysis

Top Keywords

maize shoots
32
non-bt maize
16
non-bt soils
16
shoots soils
12
higher non-bt
12
non-bt
11
maize
10
soils
10
shoots
9
microbial activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!