This paper presents a comparative study of the biodegradation of three aromatic volatile compounds in a compost-based biofilter: toluene, xylene, and 1,2,4-trimethylbenzene, used in the course of this work for the first time in the field of biofiltration. Hence, three identical biofiltration units have been operated at the laboratory scale. During the experiments, nitrogen (as urea) was supplied at various concentrations to each reactor, via irrigated nutrient solutions. A comparative analysis of the results showed that the biodegradability scale followed the degree of substitution around the aromatic ring: toluene > xylene > trimethylbenzene, with 95, 80, and 70% maximum conversions, respectively. In addition, and despite the different removal levels achieved in the three bioreactors, it was established that from a reaction viewpoint, the degradation of the three compounds seemed to follow similar metabolic pathways involving methylcatechol isomers. Finally, by varying the nitrogen input concentrations in the three reactors, three degradation regimes have been highlighted: an N-limitation regime and an N-optimum regime, common to the three solvents, and an N-excess regime, favorable to the colonization of the filter beds by nitrifying species, which particularly affected the xylene and trimethylbenzene biodegradation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2003.10466137DOI Listing

Publication Analysis

Top Keywords

toluene xylene
12
xylene trimethylbenzene
12
three
7
degradation toluene
4
xylene
4
trimethylbenzene vapors
4
vapors biofiltration
4
biofiltration comparison
4
comparison paper
4
paper presents
4

Similar Publications

Burning and flaring of oil and gas following the 2010 Deepwater Horizon (DWH) oil spill generated high airborne concentrations of fine particulate matter (PM). Neurological effects of PM have been previously reported, but this relationship has received limited attention in the context of oil spills. We evaluated associations between burning-related PM and prevalence of self-reported neurological symptoms during, and 1-3 years after, the DWH disaster cleanup.

View Article and Find Full Text PDF

Introduction: Exposure to environmental factors ( air pollution and second-hand tobacco smoke) have been associated with impaired lung function. However, the impact of environmental factors on lung health is usually evaluated separately and not with an exposomic framework. In this regard, breath analysis could be a noninvasive tool for biomonitoring of global human environmental exposure.

View Article and Find Full Text PDF

Highly hydrophobic calixarene polymers for efficient enrichment of polar nitrobenzene compounds.

Talanta

January 2025

Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China; School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou, 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.

Macrocyclic polymer materials exhibit excellent selectivity and adsorption performance in pollutant adsorption due to unique host-guest recognition. Herein, three kinds of calixarene polymers (C4P, C6P and C8P) were synthesized through Sonogashira reaction, and were characterized through H NMR, FT-IR, SEM, and TEM. The water contact angle experiments revealed that three kinds of calixarene polymers were highly hydrophobic, and they all exhibited high enrichment efficiency for weak polar chloro-substituted benzene compounds (chlorobenzene, o-chlorotoluene, p-dichlorobenzene and o-dichlorobenzene) and BTEX (benzene, toluene, ethylbenzene and xylenes).

View Article and Find Full Text PDF

Formaldehyde (HCHO), a major carbonyl compound in urban air, poses health risks due to its carcinogenic properties. However, the role of FT-PBL exchange in HCHO and the importance of vertical exchange on diurnal variations in HCHO remain unclear. This study investigated the diurnal variability of HCHO in Seoul's planetary boundary layer (PBL) during cold.

View Article and Find Full Text PDF

A Health Risk Assessment of Workers Exposed to Organic Paint Solvents Used in the Korean Shipbuilding Industry.

Toxics

December 2024

Health and Safety Convergence Science Introduction, College of Health Science, Korea University, Seoul 02841, Republic of Korea.

In the shipbuilding industry, during the painting process, workers are exposed to various substances in paint, including organic solvents that can adversely affect their health. Most workplace exposures to organic solvents involve mixtures of organic compounds. Therefore, in this study, the hazard quotient (HQ) and hazard index (HI) were derived using data from the Workplace Environmental Monitoring Program in Korea for six organic solvents (xylene, n-butanol, ethylbenzene, isobutyl alcohol, toluene, and methylisobutyl ketone [MIBK]) commonly used in the steel shipbuilding industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!