Organic templates for the generation of inorganic materials.

Angew Chem Int Ed Engl

Chemotransfiguration Project, Japan Science and Technology Corporation (JST), 2432 Aikawa, Kurume, Fukuoka 839-0861, Japan.

Published: March 2003

Mankind's fascination with shapes and patterns, many examples of which come from nature, has greatly influenced areas such as art and architecture. Science too has long since been interested in the origin of shapes and structures found in nature. Whereas organic chemistry in general, and supramolecular chemistry especially, has been very successful in creating large superstructures of often stunning morphology, inorganic chemistry has lagged behind. Over the last decade, however, researchers in various fields of chemistry have been studying novel methods through which the shape of inorganic materials can be controlled at the micro- or even nanoscopic level. A method that has proven very successful is the formation of inorganic structures under the influence of (bio)organic templates, which has resulted in the generation of a large variety of structured inorganic structures that are currently unattainable through any other method.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200390284DOI Listing

Publication Analysis

Top Keywords

templates generation
8
inorganic materials
8
inorganic structures
8
inorganic
5
organic templates
4
generation inorganic
4
materials mankind's
4
mankind's fascination
4
fascination shapes
4
shapes patterns
4

Similar Publications

Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g.

View Article and Find Full Text PDF

We test here the prediction capabilities of the new generation of deep learning predictors in the more challenging situation of multistate multidomain proteins by using as a case study a coiled-coil family of Nucleotide-binding Oligomerization Domain-like (NOD-like) receptors from and a few extra examples for reference. Results reveal a truly remarkable ability of these platforms to correctly predict the 3D structure of modules that fold in well-established topologies. A lower performance is noticed in modeling morphing regions of these proteins, such as the coiled coils.

View Article and Find Full Text PDF

This study evaluates the performance of various structure prediction tools and molecular docking platforms for therapeutic peptides targeting coronary artery disease (CAD). Structure prediction tools, including AlphaFold 3, I-TASSER 5.1, and PEP-FOLD 4, were employed to generate accurate peptide conformations.

View Article and Find Full Text PDF

HBV cccDNA: The Molecular Reservoir of Hepatitis B Persistence and Challenges to Achieve Viral Eradication.

Biomolecules

January 2025

Department of Gastroenterology and Hepatology, Erasmus Medical Center, Wytemaweg 80, 3015CN Rotterdam, The Netherlands.

Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is effective in the suppression of viral activity but generally requires lifelong treatment.

View Article and Find Full Text PDF

Amplification Bias-Free Sequence-Generic Exponential Amplification Reaction.

Anal Chem

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.

Despite the unique advantage of the isothermal exponential amplification reaction (EXPAR) for the rapid detection of short nucleic acids, it severely suffers from the drawback of sequence-dependent amplification bias, mainly arising from the secondary structures of the EXPAR template under the commonly used reaction temperature (55 °C). As such, the limits of detection (LOD) for different target sequences may vary considerably from aM to nM. Here we report a sequence-generic exponential amplification reaction (SG-EXPAR) that eliminates sequence-dependent amplification bias and achieves similar amplification performance for different targets with generally sub-fM LODs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!