Dykellic acid is a novel microbial metabolite isolated from the broth of Westerdykella multispora F50733. Investigations on the molecular function of dykellic acid revealed that this compound partially inhibits calcium influx, resulting in a decrease in Ca(2+)-dependent endonuclease activation and DNA fragmentation induced by camptothecin. In our experiments, active caspase-3-like protease cleavage of procaspase-3, PARP, and cytosolic cytochrome c was inhibited by dykellic acid in a concentration-dependent manner when the apoptosis was induced by camptothecin as well as doxorubicin. We confirmed that dykellic acid did not bind to camptothecin using surface plasmon resonance analysis. These results suggest that dykellic acid inhibits drug-induced apoptosis via a caspase-3-like protease-suppressing mechanism. Our data provide important information on the mechanism of action of dykellic acid and indicate that this compound may be employed in the treatment of specific caspase-3-like protease-mediated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-291x(03)00210-9 | DOI Listing |
J Med Chem
January 2009
Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA.
Small molecule inhibitors of apoptosis hold considerable promise for the treatment of a host of diseases, including neurodegeneration, myocardial infarction, and stroke. Many compounds that delay or prevent apoptotic death either reduce the amount of cellular reactive oxygen species (ROS) or are direct inhibitors of caspases. With the goal of using small molecules to identify novel antiapoptotic targets, we have investigated the cytoprotective activity of the natural product dykellic acid.
View Article and Find Full Text PDFBiol Pharm Bull
November 2006
Department of Food Science & Technology, Kyungpook National University, Daegu, Korea.
Dykellic acid, a novel factor initially identified from the culture broth of Westerdykella multispora F50733, has been shown to inhibit matrix metalloprotease 9 activity, caspase-3 activity, B cell proliferation and LPS-induced IgM production, suggesting that this factor may have anti-cancer effects. In an effort to further address the possible anti-tumoral effects of dykellic acid, we used wound healing, invasion and RhoA-GTP assays to examine the effects of dykellic acid on cell migration, invasion and angiogenesis. Our results revealed that dykellic acid dose-dependently inhibits B16 cell migration and motility, and inhibits HUVEC tube formation.
View Article and Find Full Text PDFCancer Res
June 2003
Department of Immunology, School of Medicine, Keimyung University, Taegu 700-712, Korea.
Proteolytic degradation of the extracellular matrix and tumor metastasis correlate with expression of endopeptidases known as matrix metalloproteinases (MMPs). Expression of MMPs is regulated by cytokines and signal transduction pathways, including those activated by phorbol myristate acetate. We found that dykellic acid, a fungal metabolite, significantly inhibits the phorbol myristate acetate-induced increase in MMP-9 expression and activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2003
Korea Research Institute of Bioscience & Biotechnology, Taejon 305-333, Republic of Korea.
Dykellic acid is a novel microbial metabolite isolated from the broth of Westerdykella multispora F50733. Investigations on the molecular function of dykellic acid revealed that this compound partially inhibits calcium influx, resulting in a decrease in Ca(2+)-dependent endonuclease activation and DNA fragmentation induced by camptothecin. In our experiments, active caspase-3-like protease cleavage of procaspase-3, PARP, and cytosolic cytochrome c was inhibited by dykellic acid in a concentration-dependent manner when the apoptosis was induced by camptothecin as well as doxorubicin.
View Article and Find Full Text PDFJ Antibiot (Tokyo)
October 2001
Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!