Differential gene expression in primary and recurrent carotid stenosis.

Biochem Biophys Res Commun

Division of Vascular Surgery, Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0541, USA.

Published: March 2003

Apoptosis of the cellular components of complex atherosclerotic plaque may lead to plaque instability and rupture. In this study, five primary plaques and one recurrent fibrointimal lesion obtained from patients undergoing carotid endarterectomy for symptomatic carotid stenosis > or = 70% were analyzed by immunohistochemistry and cDNA microarray to identify gene expression patterns that may determine plaque susceptibility or resistance to apoptosis. Immunohistochemistry showed expression of active caspase 3, an effector of apoptosis, in macrophages and lymphocytes surrounding the lipid core, in smooth muscle cells in the fibrous cap, and media of primary plaques as well as in occasional smooth muscle cells in the recurrent lesion. Among the genes demonstrating increased expression in primary plaques were IGFR2, DR4, DAPK1, Bak, and ERK 1 and 2 and those showing decreased expression included the TNF receptors 1 and 2, akt1, and IGFBP3. When comparing the recurrent lesion to the normal tissue, the expression of 13 genes was decreased by 3-fold, including IGFBP2 and IGFBP3, and none were increased by more than 1.5-fold. The analysis of gene expression patterns in primary and recurrent stenotic lesions provides a powerful approach to identify the signaling pathways that alter cellular apoptotic patterns in such lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(03)00191-8DOI Listing

Publication Analysis

Top Keywords

gene expression
12
primary plaques
12
expression primary
8
primary recurrent
8
carotid stenosis
8
expression patterns
8
smooth muscle
8
muscle cells
8
recurrent lesion
8
expression
7

Similar Publications

Impact of Fli1 deletion on B cell populations: A focus on age-associated B cells and transcriptional dynamics.

J Dermatol Sci

December 2024

Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan. Electronic address:

Background: Altered Fli1 expression is associated with various autoimmune diseases, yet its impact on B cells remains unexplored.

Objective: This study investigated the direct effects of Fli1 depletion on B cell populations, focusing on age-associated B cells (ABCs).

Methods: Splenocytes of Fli1 BcKO (Cd19-Cre; Fli1) and Cd19-Cre mice were analyzed flow cytometrically.

View Article and Find Full Text PDF

Temporal dynamics of PM induced cell death: Emphasizing inflammation as key mediator in the late stages of prolonged myocardial toxicity.

Exp Cell Res

January 2025

Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio-45267, United States of America; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur-613401, Tamil Nadu, India. Electronic address:

Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model.

View Article and Find Full Text PDF

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the BBX gene family in Lagerstroemia indica grown under light stress.

Int J Biol Macromol

January 2025

Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China. Electronic address:

B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome.

View Article and Find Full Text PDF

Genome-wide analysis of GRAS gene family and functional identification of a putative development and maintenance of axillary meristematic tissue gene PlGRAS22 in Paeonia ludlowii.

Int J Biol Macromol

January 2025

School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:

The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!