Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increasing evidence suggests that the time course of advantageous versus deleterious effects of stress on physiologic function is also apparent in some brain functions, including learning and memory. This article reviews the effects of chronic stress on behavioral performance and, more importantly, shows that sex of the subject, as well as duration and intensity of stress, is an important determinant of the functional/behavioral, neurochemical, and anatomical consequences of the stress. Following chronic stress (7-28 days of restraint, 6 h/day), male and female rats were tested on a visual memory task (object recognition) and two spatial memory tasks (object placement and radial arm maze). At 21 days, stress impaired males on all tasks while females were either enhanced (spatial memory tasks) or not impaired (nonspatial memory tasks). Additionally, the influence of the hypothalamic-pituitary-adrenocortical axis in mediating the sex-specific responses to stress is considered. Behavioral and neurochemical assessments following chronic stress in ovariectomized females, with and without estradiol, suggest that estrogen exerts both organizational and activational influences on the observed sex differences in response to stress. Furthermore, stress differentially affected central transmitter levels in the frontal cortex, hippocampus, and amygdala depending on sex. The possible role of these sex-specific changes in neurotransmitter levels in mediating behavioral differences in response to stress is discussed. While these results are thus far limited to a few studies and require both further investigation and verification, chronic stress appears to be associated with distinct, sex-differentiated behavioral/cognitive and neurochemical responses. We conclude that sex differences must be taken into account when investigating or describing stress and associated sequalae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0018-506x(02)00022-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!