NMR-based screening methods for lead discovery.

EXS

Institut für Organische Chemie, Johann-Wolfgang von Goethe-Universität Frankfurt/Main, Marie-Curie Str. 11, D-60431 Frankfurt, Main, Germany.

Published: April 2003

AI Article Synopsis

Article Abstract

Diversity and robustness of NMR based screening methods make these techniques highly attractive as tools for drug discovery. Although not all screening techniques discussed here may be applicable to any given target, there is however a good chance that at least one of the described methods will prove productive in finding several medium affinity ligands. A comparison of each of the methods is given in Table 1. For drug targets of molecular weight < 30 kDa SAR by NMR appears to be the method of choice since it yields detailed information about the location of the binding site. It remains to be seen whether 15N-1H-TROSY based screening techniques will prove useful for larger protein targets, especially considering the added effort needed for spectral assignment and the increased complexity due to spectral overlap. Nevertheless, with the application of new cryo-cooled NMR probes, 15N-1H-HSQC based screening can now be considered a high throughput method. Ligand-based NMR screening methods can be used for protein targets of virtually any size, but are restricted in the ligand's binding affinity range. Because sufficient ligand-protein dissociation rates are needed, only binding of ligands with low (milimolar) to intermediate (micromolar) affinities is detectable. It is expected that cryo-cooled NMR probe technology will also advance ligand detected NMR screening to the high throughput level. Certainly protein and ligand concentrations can be lowered drastically and experiment times can be shortened with increased sensitivity. However, spectral overlap will be of major concern when mixtures of up to 100 compounds are to be screened. For such applications only techniques for which the signals of bound ligands survive will be useful, and sophisticated software will be needed to deconvolute the spectra of multiple bound ligands. Although only ligands with medium to low affinities can be found, ligand based NMR screening has been used as an effective prescreening tool for assay based high throughput screening. Identifying a large ensemble of medium affinity ligands may not only aid in building a binding site pharmacophore model (see Chapter 11), but also may yield crucial information for overcoming tissue availability, toxicity, or even intellectual property related problems. Although NMR based screening is only one of the more recent additions to the bag of tools used in drug discovery [1, 2], its simplicity and wide range of application (including protein-protein and protein-nucleic acid interactions) has attracted much attention. Advances in NMR instrumentation and methodology have already paved the road for NMR based screening to become a high throughput technique. In addition to this, NMR is exceptional in the amount of detailed structural [table: see text] information it can provide. Not only can NMR readily reveal the binding site (15N-1H-HSQC screening) or the conformation of the bound ligand (transfer NOE), but it can also supply information that enables precise docking of the ligand to the protein's binding pocket (isotope-filtered NOESY). NMR data can therefore provide a natural connection between experimental HTS and combinatorial chemistry techniques with computational methods such as 3D-database searching (see Chapter 10), virtual screening (docking) and structure-based ligand design (see also Chapter 8).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-0348-7997-2_9DOI Listing

Publication Analysis

Top Keywords

based screening
20
high throughput
16
nmr
13
screening methods
12
nmr based
12
screening
12
binding site
12
nmr screening
12
tools drug
8
drug discovery
8

Similar Publications

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety.

View Article and Find Full Text PDF

Background And Objectives: Although multiple sclerosis (MS) can be conceptualized as a network disorder, brain network analyses typically require advanced MRI sequences not commonly acquired in clinical practice. Using conventional MRI, we assessed cross-sectional and longitudinal structural disconnection and morphometric similarity networks in people with MS (pwMS), along with their relationship with clinical disability.

Methods: In this longitudinal monocentric study, 3T structural MRI of pwMS and healthy controls (HC) was retrospectively analyzed.

View Article and Find Full Text PDF

Capillary Electrophoresis-Mass Spectrometry for Top-Down Proteomics.

Annu Rev Anal Chem (Palo Alto Calif)

January 2025

Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; email:

Mass spectrometry (MS)-based top-down proteomics (TDP) characterizes proteoforms in cells, tissues, and biological fluids (e.g., human plasma) to better our understanding of protein function and to discover new protein biomarkers for disease diagnosis and therapeutic development.

View Article and Find Full Text PDF

Rationale: Although the guidelines generally omit routine antibiotic prophylaxis for diagnostic bronchoscopy, this recommendation is primarily based on studies with relatively small sample sizes conducted at single institutions. Moreover, the applicability of recent technical and procedural advancements to these guidelines remains uncertain.

Objectives: To evaluate whether oral prophylactic antibiotic administration for diagnostic bronchoscopy reduces post-bronchoscopy infections among non-infectious diseases in the current setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!