Evolution of the vertebrate cytosolic malate dehydrogenase gene family: duplication and divergence in actinopterygian fish.

J Mol Evol

Department of Biological Sciences, Baruch Institute and School of the Environment, University of South Carolina, Columbia, SC 29208, USA.

Published: March 2003

A general correlation between neural expression and negative charge in isozymes suggests charge represents an adaptation to the neural environment. Interestingly, a notable exception exists in teleost fish. Two cytosolic malate dehydrogenase (MDH) isozymes have different spatial expression patterns in certain fishes: one is expressed in all tissues and the second is expressed primarily in the eye and skeletal muscle. While the neural MDH isozyme is negatively charged, the difference in charge between the two isozymes is not as pronounced as that observed in other gene families (e.g., triosephosphate isomerase and lactate dehydrogenase). Most tetrapods express a single cytosolic MDH isozyme, and it has been demonstrated recently that the pair of isozymes found in teleosts results from a gene duplication sometime after the separation of teleosts and tetrapods, although the exact timing of this duplication has not been inferred. Phylogenetic analyses suggest that the duplication of teleost isozymes occurred during the radiation of actinopterygian fish, consistent with the timing of duplication at other loci. Using inferred amino acid sequences, we examine the pattern of change following the duplication and across the rest of the MDH gene tree. Comparison between the MDH gene family and another gene family that shows a larger charge differential among members (triosephosphate isomerase) indicates that the smaller charge difference between MDH isozymes is best explained by greater constraint on amino acid change directly following the duplication, not greater constraint across the entire gene tree. This difference in constraint might result from the wider pattern of expression of the "neural" MDH isozyme.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-002-2398-xDOI Listing

Publication Analysis

Top Keywords

gene family
12
mdh isozyme
12
cytosolic malate
8
malate dehydrogenase
8
actinopterygian fish
8
charge isozymes
8
mdh isozymes
8
triosephosphate isomerase
8
timing duplication
8
amino acid
8

Similar Publications

DNA methylation is known to be associated with cataracts. In this study, we used a mouse model and performed DNA methylation and transcriptome sequencing analyses to find epigenetic indicators for age-related cataracts (ARC). Anterior lens capsule membrane tissues from young and aged mice were analyzed by MethylRAD-seq to detect the genome-wide methylation of extracted DNA.

View Article and Find Full Text PDF

ABCA4 Deep Intronic Variants Contributed to Nearly Half of Unsolved Stargardt Cases With a Milder Phenotype.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: The purpose of this study was to investigate the contribution and natural progression of ABCA4 deep intronic variants (DIVs) among a Chinese Stargardt disease (STGD) cohort.

Methods: For unsolved STGD probands, DIVs in ABCA4 were detected by next-generation sequencing, and splicing effects were evaluated by in silico tools and validated through minigene experiments. Comprehensive ocular examinations, especially fundus changes, were carried out and analyzed.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.

View Article and Find Full Text PDF

Foliar-applied Zn on Catharanthus roseus enhanced production of vindoline, the main impediment precursor for costly anticancer bisindoles. A leaf-abundant CrZIP was characterized for likely role in modulating vindoline metabolism. The leaf-localized Catharanthus roseus alkaloid, vindoline, is the major impediment precursor in the production of scanty and expensive anticancer bisindoles, vinblastine and vincristine.

View Article and Find Full Text PDF

A plasmid with the gene enhances the fitness of strains under laboratory conditions.

Microbiology (Reading)

January 2025

Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum -lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!