Bead-based assays on very large numbers of molecules in gene expression studies, drug screening and clinical diagnostics, require the encoding of each of the microspheres according to the particular ligand bound to its surface. This allows mixing the uniquely encoded microspheres and subjecting them to an assay simultaneously. When a particular microsphere gives a positive reaction, the substance on its surface can be identified by reading the code. Previously reported techniques for colour encoding polymer microspheres only allow for a limited number of unique codes. Graphical encoding methods use metallic particles, which are rather uncommon in screening applications. Here, we demonstrate a new approach to encode polymer microspheres that are commonly used in screening applications, such as polystyrene microspheres, with a method that provides a virtually unlimited number of unique codes. Patterns can be written in fluorescently dyed microspheres by 'spatial selective photobleaching' and can be identified by confocal microscopy. Such encoded microparticles can find broad application in the collection and analysis of genetic information, high-throughput screening, medical diagnostics and combinatorial chemistry, and can also be used for labelling of consumer goods or as security labels to prevent counterfeiting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat828 | DOI Listing |
Biopolymers
January 2025
Bioactive Molecules Research Laboratory, Faculty of Sciences, Section II, Lebanese University, Lebanon.
Biomaterials with antimicrobial and muco-adhesive properties represent an efficient system for different applications. In this paper, a new biomaterial based on chitosan-camphor beads and their crosslinked form with glutaraldehyde was optimized. Low and high molecular weight chitosan were considered.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
Luminescent metal-organic frameworks (MOFs) with exceptional dynamics and diverse active sites possess tremendous potential in information security and anticounterfeiting applications. However, traditional MOF systems are based on broadband spectral signals with spectrum overlap, which easily leads to low-resolution signal identification, compromising the overall security level. Here, we report the coordination-defect-induced amorphous pure-MOF microsphere with switchable whispering-gallery-mode (WGM) signals as a mode-dependent security platform.
View Article and Find Full Text PDFThis review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infrared (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release.
View Article and Find Full Text PDFLangmuir
December 2024
Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia.
Alzheimer's disease (ALZ) is a neurodegenerative disease that damages neuronal cells and causes decline in cognitive abilities. Administration of cholinesterase inhibitor compounds is the primary choice in the treatment of ALZ, one of which is rivastigmine (RVT). Several routes of administration of RVT are available, such as oral and transdermal.
View Article and Find Full Text PDFADMET DMPK
October 2024
PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur-209305, U.P., India.
Background And Purpose: The study explores basil seed mucilage as a bioadhesive carrier for naproxen sodium, demonstrating its ability to enhance solubility when administered rectally. The mucilage, derived from seeds, showed bioadhesive properties and thermal stability, as confirmed by FTIR spectroscopy and X-ray diffraction analysis.
Experimental Approach: Microspheres were prepared using a double emulsion solvent evaporation technique, varying polymer ratios to optimize drug delivery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!