It is widely thought that the biological outcomes of Raf-1 activation are solely attributable to the activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. However, an increasing number of reports suggest that some Raf-1 functions are independent of this pathway. In this report we show that mutation of the amino-terminal 14-3-3 binding site of Raf-1 uncouples its ability to activate the MEK/ERK pathway from the induction of cell transformation and differentiation. In NIH 3T3 fibroblasts and COS-1 cells, mutation of serine 259 resulted in Raf-1 proteins which activated the MEK/ERK pathway as efficiently as v-Raf. However, in contrast to v-Raf, RafS259 mutants failed to transform. They induced morphological alterations and slightly accelerated proliferation in NIH 3T3 fibroblasts but were not tumorigenic in mice and behaved like wild-type Raf-1 in transformation assays measuring loss of contact inhibition or anchorage-independent growth. Curiously, the RafS259 mutants inhibited focus induction by an activated MEK allele, suggesting that they can hyperactivate negative-feedback pathways. In primary cultures of postmitotic chicken neuroretina cells, RafS259A was able to sustain proliferation to a level comparable to that sustained by the membrane-targeted transforming Raf-1 protein, RafCAAX. In contrast, RafS259A was only a poor inducer of neurite formation in PC12 cells in comparison to RafCAAX. Thus, RafS259 mutants genetically separate MEK/ERK activation from the ability of Raf-1 to induce transformation and differentiation. The results further suggest that RafS259 mutants inhibit signaling pathways required to promote these biological processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149463PMC
http://dx.doi.org/10.1128/MCB.23.6.1983-1993.2003DOI Listing

Publication Analysis

Top Keywords

rafs259 mutants
16
transformation differentiation
12
raf-1
8
mek/extracellular signal-regulated
8
signal-regulated kinase
8
mek/erk pathway
8
nih 3t3
8
3t3 fibroblasts
8
raf-1 mutant
4
mutant dissociates
4

Similar Publications

It is widely thought that the biological outcomes of Raf-1 activation are solely attributable to the activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. However, an increasing number of reports suggest that some Raf-1 functions are independent of this pathway. In this report we show that mutation of the amino-terminal 14-3-3 binding site of Raf-1 uncouples its ability to activate the MEK/ERK pathway from the induction of cell transformation and differentiation.

View Article and Find Full Text PDF

The Raf-1 kinase activates the ERK (extracellular-signal-regulated kinase) pathway. The cyclic AMP (cAMP)-dependent protein kinase (PKA) can inhibit Raf-1 by direct phosphorylation. We have mapped all cAMP-induced phosphorylation sites in Raf-1, showing that serines 43, 259, and 621 are phosphorylated by PKA in vitro and induced by cAMP in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!