The superior paraolivary nucleus (SPON) is a prominent nucleus of the superior olivary complex. In rats, this nucleus is composed of a morphologically homogeneous population of GABAergic neurons that receive excitatory input from the contralateral cochlear nucleus and inhibitory input from the ipsilateral medial nucleus of the trapezoid body. SPON neurons provide a dense projection to the ipsilateral inferior colliculus and are thereby capable of exerting profound modulatory influence on collicular neurons. Despite recent interest in the structural and connectional features of SPON, little is presently known concerning the physiological response properties of this cell group or its functional role in auditory processing. We utilized extracellular, in vivo recording methods to study responses of SPON neurons to broad band noise, pure tone, and amplitude-modulated pure tone stimuli. Localization of recording sites within the SPON provides evidence for a medial (high frequency) to lateral (low frequency) tonotopic representation of frequencies within the nucleus. Best frequencies of SPON neurons spanned the audible range of the rat and receptive fields were narrow with V-shaped regions near threshold. Nearly all SPON neurons responded at the offset of broad band noise and pure tone stimuli. The vast majority of SPON neurons displayed very low rates of spontaneous activity and only responded to stimuli presented to the contralateral ear, although a small population showed binaural facilitation. Most SPON neurons also generated spike activity that was synchronized to sinusoidally amplitude-modulated tones. Taken together, these data suggest that SPON neurons may serve to encode temporal features of complex sounds, such as those contained in species-specific vocalizations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00547.2002 | DOI Listing |
J Neurosci
November 2023
Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
The medial nucleus of the trapezoid body (MNTB) in the auditory brainstem is the principal source of synaptic inhibition to several functionally distinct auditory nuclei. Prominent projections of individual MNTB neurons comprise the major binaural nuclei that are involved in the early processing stages of sound localization as well as the superior paraolivary nucleus (SPON), which contains monaural neurons that extract rapid changes in sound intensity to detect sound gaps and rhythmic oscillations that commonly occur in animal calls and human speech. While the processes that guide the development and refinement of MNTB axon collaterals to the binaural nuclei have become increasingly understood, little is known about the development of MNTB collaterals to the monaural SPON.
View Article and Find Full Text PDFFront Neuroanat
August 2023
Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain.
Introduction: In the mammalian auditory pathway, the nuclei of the lateral lemniscus (NLL) are thought to be exclusively involved in the bottom-up transmission of auditory information. However, our repeated observation of numerous NLL neurons labeled after injection of retrograde tracers into the superior olivary complex (SOC) led us to systematically investigate with retrograde tracers the descending projections from the NLL to the SOC of the rat.
Methods: We performed large injections of FluoroGold into the SOC to determine NLL contributions to descending projections, and focal injections of biotinylated dextran amine (BDA) to pinpoint the specific nuclei of the SOC innervated by each NLL.
Curr Med Chem
January 2022
Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa,Italy.
Mutations in human genes might lead to the loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing.
View Article and Find Full Text PDFEur J Neurosci
August 2018
Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
Communication sounds across all mammals consist of multiple frequencies repeated in sequence. The onset and offset of vocalizations are potentially important cues for recognizing distinct units, such as phonemes and syllables, which are needed to perceive meaningful communication. The superior paraolivary nucleus (SPON) in the auditory brainstem has been implicated in the processing of rhythmic sounds.
View Article and Find Full Text PDFFront Neural Circuits
February 2018
Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden.
Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!