Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion.

J Neurophysiol

Gait and Posture Lab, Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Published: April 2003

Understanding reactive recovery responses to slipping is fundamental in falls research and prevention. The primary purpose of this study was to investigate the role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip. Ten healthy, young adults participated in this experiment in which an unexpected slip was induced by a set of steel free-wheeling rollers. Surface electromyography (EMG) data were collected from the unperturbed limb (i.e., the swing limb) rectus femoris, biceps femoris, tibialis anterior, and the medial head of gastrocnemius, and bilateral gluteus medius, erector spinae, and deltoids. Kinematic data were also collected by an optical imaging system to monitor limb trajectories. The first slip response was significantly different from the subsequent recovery responses to the unexpected slips, with an identifiable reactive recovery response and no proactive changes in EMG patterns. The muscles of the unperturbed limb, upper body, and arms were recruited at the same latency as those previously found for the perturbed limb. The arm elevation strategies assisted in shifting the center of mass forward after it was posteriorly displaced with the slip, while the unperturbed limb musculature demonstrated an extensor strategy supporting the observed lowering of the limb to briefly touch the ground to widen the base of support and to increase stability. Evidently a dynamic multilimb coordinated strategy is employed by the CNS to control and coordinate the upper and lower limbs in reactive recovery responses to unexpected slips during locomotion.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00683.2002DOI Listing

Publication Analysis

Top Keywords

unperturbed limb
20
reactive recovery
20
recovery response
12
unexpected slip
12
recovery responses
12
limb
9
role unperturbed
8
limb arms
8
arms reactive
8
response unexpected
8

Similar Publications

Plantar sensation associates with gait instability in older adults.

J Neuroeng Rehabil

January 2025

Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA.

Background: Advanced age brings a loss of plantar sensation, represented, for example, as higher sensation thresholds in standardized testing. This is thought to contribute to an increased risk of falls among older adults - an intuitive premise that has yet to be fully investigated, especially in the context of walking balance. The purpose of this study was to quantify the association between plantar sensation and the instability elicited by a suite of walking balance perturbations that differ in direction and context in a cohort of n = 28 older adults (73.

View Article and Find Full Text PDF

Predicting prosthetic gait and the effects of induced stiff-knee gait.

PLoS One

January 2025

Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, DIAKOVERE Annastift, Hannover Medical School, Hannover, Germany.

Prosthetic gait differs considerably from the unimpaired gait. Studying alterations in the gait patterns could help to understand different adaptation mechanisms adopted by these populations. This study investigated the effects of induced stiff-knee gait (SKG) on prosthetic and healthy gait patterns and the capabilities of predictive simulation.

View Article and Find Full Text PDF

Perturbing reach elicits anticipatory responses in transport and grasp.

Front Hum Neurosci

October 2024

Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, MA, United States.

Introduction: The purpose of this study was to investigate whether the anticipation of a mechanical perturbation applied to the arm during a reach-to-grasp movement elicits anticipatory adjustments in the reach and grasp components. Additionally, we aimed to evaluate whether anticipatory adjustments in the upper limb might be global or specific to the direction of the perturbation.

Methods: Thirteen healthy participants performed reach-to-grasp with perturbations randomly applied to their dominant limb.

View Article and Find Full Text PDF

Musculoskeletal conditions often involve pain related to specific movements. However, most studies on the impact of experimental pain on motor performance and learning have used tonic pain models. This study aimed to evaluate the effect of experimental phasic pain during the preparation or execution of a reaching task on the acquisition and retention of sensorimotor adaptation.

View Article and Find Full Text PDF

The extent to which healthy older adults rely on anticipatory control following simulated slip exposure.

J Biomech

May 2024

Department of Human Movement Sciences, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.

As the recovery from gait perturbations is coordinatively complex and error-prone, people often adopt anticipatory strategies when the perturbation is expected. These anticipatory strategies act as a first line of defence against potential balance loss. Since age-related changes in the sensory and neuromotor systems could make the recovery from external perturbations more difficult, it is important to understand how older adults implement anticipatory strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!