We have examined the effects of insulin on p38 mitogen-activated protein kinase (MAPK) phosphorylation in human skeletal muscle and the effects of prior exercise hereon. Seven men performed 1-h one-legged knee extensor exercise 3 h before the initiation of a 100-min euglycemic-hyperinsulinemic (600 pmol/l) clamp. Glucose uptake across the legs was measured with the leg balance technique, and muscle biopsies were obtained from the rested and exercised vastus lateralis before and during insulin infusion. Net glucose uptake during the clamp was approximately 50% higher (P < 0.05) in the exercised leg than in the rested leg. Insulin induced a modest sustained 1.2- and 1.3-fold increase (P < 0.05) in p38 MAPK phosphorylation in the rested and exercised legs, respectively. However, p38 phosphorylation was approximately 50% higher (P < 0.05) in the exercised compared with the rested leg before and during insulin infusion. We conclude that a physiological concentration of insulin causes modest but sustained activation of the p38 MAPK pathway in human skeletal muscle. Furthermore, the stimulatory effect of exercise on p38 phosphorylation is persistent for at least 3 h after exercise and remains evident during subsequent insulin stimulation. Because p38 MAPK has been suggested to play a necessary role in activation of GLUT-4 at the cell surface, the present data may suggest a putative role of p38 MAPK in the increased insulin sensitivity of skeletal muscle after exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00036.2003DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
p38 mapk
16
human skeletal
12
prior exercise
8
p38
8
p38 mitogen-activated
8
mitogen-activated protein
8
protein kinase
8
phosphorylation human
8
mapk phosphorylation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!