Objective: NN703 (tabimorelin) is an orally active growth hormone (GH) secretagogue intended for use as an alternative to daily injections of GH. In vitro studies in human liver microsomes have indicated that NN703 is a mechanism-based inhibitor of CYP3A4. The aim of the present study was to investigate in man the effects of NN703 on the pharmacokinetics of midazolam, a substrate of CYP3A4.

Methods: Seventeen adult male subjects were enrolled in the study, and each received an oral dose of midazolam (7.5 mg) on four occasions: at baseline (day 1), after one dose of NN703 (day 3), after 7 days once daily NN703 treatment (day 9) and after a 7-day washout period (day 16). The pharmacokinetics of midazolam and its main metabolite, alpha-hydroxymidazolam, were investigated.

Results: Following a single dose of NN703 (day 3), the AUC of both midazolam and alpha-hydroxymidazolam increased by 64% and 34%, respectively (P=0.0001 for both). After repeated NN703 dosing (day 9), NN703 levels reached steady state, and midazolam AUC further increased to 93% relative to baseline (P=0.0001), whereas alpha-hydroxymidazolam AUC decreased slightly and was 11% higher than baseline (n.s.). Following the washout period (day 16), midazolam AUC decreased to values lower than those on day 3 and day 9, but still significantly (45%) higher than baseline levels (P=0.0001). The C(max) values of midazolam and alpha-hydroxymidazolam demonstrated a pattern similar to the AUC, but the effect following repeated NN703 dosing was more pronounced. The t(1/2) of midazolam increased from day 1 to day 3 (P=0.0483) but was essentially unchanged at steady state on day 9.

Conclusion: This study shows that administration of NN703 and midazolam, a CYP3A4 substrate, leads to a significant increase in exposure of midazolam. This is consistent with NN703 inhibition of CYP3A4 activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00228-002-0539-1DOI Listing

Publication Analysis

Top Keywords

nn703
12
day
12
midazolam
11
nn703 tabimorelin
8
inhibitor cyp3a4
8
cyp3a4 activity
8
midazolam cyp3a4
8
cyp3a4 substrate
8
pharmacokinetics midazolam
8
dose nn703
8

Similar Publications

Analytical methods to determine the potential misuse of the ghrelin mimetics capromorelin (CP-424,391), macimorelin (macrilen, EP-01572) and tabimorelin (NN703) in sports were developed. Therefore, different extraction strategies, i.e.

View Article and Find Full Text PDF

Objective: Little is known of the usefulness of GH secretagogues (GHSs) in GH-deficient (GHD) adults. The objective of this study was to determine the number of responders to treatment with NN703 in GHD adults.

Design: A multicentre, randomized, double-blind, and placebo-controlled study.

View Article and Find Full Text PDF

Objective: NN703 (tabimorelin) is an orally active growth hormone (GH) secretagogue intended for use as an alternative to daily injections of GH. In vitro studies in human liver microsomes have indicated that NN703 is a mechanism-based inhibitor of CYP3A4. The aim of the present study was to investigate in man the effects of NN703 on the pharmacokinetics of midazolam, a substrate of CYP3A4.

View Article and Find Full Text PDF

Pharmacokinetics for one growth hormone secretogogue (NNC 26-0722), but not for another (NN703), differ between dogs in estrus or anestrus. We examined if the differences could be mimicked by administering estradiol during anestrus and if there was a relationship with rates of small intestine absorption. Pharmacokinetics for oral doses of NN703 (1.

View Article and Find Full Text PDF

In order to obtain more potent growth hormone secretagogues, a comparison of ipamorelin and NN703 suggested the addition of a polar group at the C-terminus of NN703. A study was conducted using constrained amines for this purpose. Here, substituted 4-piperidinylamino- and 4-dimethylaminopiperidino-substituents were found to give the most active compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!