Spontaneous loss of the Epstein-Barr virus (EBV) genome in the BL cell line Akata led to loss of tumorigenicity in SCID mice, suggesting an important oncogenic activity of EBV in B cells. We previously showed that introduction of the BARF1 gene into the human B-cell line Louckes induced a malignant transformation in newborn rats (M. X. Wei, J. C. Moulin, G. Decaussin, F. Berger, and T. Ooka, Cancer Res. 54:1843-1848, 1994). Since 1 to 2% of Akata cells expressed lytic antigens and expressed the BARF1 gene, we investigated whether introduction of the BARF1 gene into EBV-negative Akata cells can induce malignant transformation. Here we show that BARF1-transfected, EBV-negative Akata cells activated Bcl2 expression and induced tumor formation when they were injected into SCID mice. In addition, when EBV-positive Akata cells expressing a low level of BARF1 protein were injected into SCID mice, the expression of BARF1, as well as several lytic proteins, such as EA-D, ZEBRA, and a 135-kDa DNA binding protein, increased in tumor cells while no latent LMP1 and late gp220-320 expression was observed in tumor cells. These observations suggest that the BARF1 gene may be involved in the conferral of tumorigenicity by EBV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149494PMC
http://dx.doi.org/10.1128/jvi.77.6.3859-3865.2003DOI Listing

Publication Analysis

Top Keywords

akata cells
20
barf1 gene
20
malignant transformation
12
introduction barf1
12
scid mice
12
cells
8
cells introduction
8
epstein-barr virus
8
ebv-negative akata
8
injected scid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!