Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activation of ERK1/2 stimulates macroautophagy in the human colon cancer cell line HT-29 by favoring the phosphorylation of the Galpha-interacting protein (GAIP) in an amino acid-dependent manner (Ogier-Denis, E., Pattingre, S., El Benna, J., and Codogno, P. (2000) J. Biol. Chem. 275, 39090-39095). Here we show that ERK1/2 activation by aurintricarboxylic acid (ATA) treatment induces the phosphorylation of GAIP in an amino acid-dependent manner. Accordingly, ATA challenge increased the rate of macroautophagy, whereas epidermal growth factor did not significantly affect macroautophagy and GAIP phosphorylation status. In fact, ATA activated the ERK1/2 signaling pathway, whereas epidermal growth factor stimulated both the ERK1/2 pathway and the class I phosphoinositide 3-kinase pathway, known to decrease the rate of macroautophagy. Amino acids interfered with the ATA-induced macroautophagy by inhibiting the activation of the kinase Raf-1. The role of the Ras/Raf-1/ERK1/2 signaling pathway in the GAIP- and amino acid-dependent control of macroautophagy was confirmed in HT-29 cells expressing the Ras(G12V,T35S) mutant. Similar to the protein phosphatase 2A inhibitor okadaic acid, amino acids sustained the phosphorylation of Ser(259), which is involved in the negative regulation of Raf-1. In conclusion, these results add a novel target to the amino acid signaling-dependent control of macroautophagy in intestinal cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M210998200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!