Consensus profiles were established to screen data bases for novel animal L-type lectins. The profiles were generated from linear sequence motifs of the human L-type lectin-like membrane proteins ERGIC-53, ERGL, and VIP36 and by optimal alignment of the entire carbohydrate recognition domain of these proteins. The search revealed numerous orthologous and homologous L-type lectin-like proteins in animals, protozoans, and yeast, as well as the sequence of a novel family member related to VIP36, named VIPL for VIP36-like. Sequence analysis suggests that VIPL is a ubiquitously expressed protein and appeared earlier in evolution than VIP36. The cDNA of VIPL was cloned and expressed in cell culture. VIPL is a high-mannose type I membrane glycoprotein with similar domain organization as VIP36. Unlike VIP36 and ERGIC-53 that are predominantly associated with postendoplasmic reticulum (ER) membranes and cycle in the early secretory pathway, VIPL is a non-cycling resident protein of the ER. Mutagenesis experiments indicate that ER retention of VIPL involves a RKR di-arginine signal. Overexpression of VIPL redistributed ERGIC-53 to the ER without affecting the cycling of the KDEL-receptor and the overall morphology of the early secretory pathway. The results suggest that VIPL may function as a regulator of ERGIC-53.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M211199200DOI Listing

Publication Analysis

Top Keywords

vipl
9
animal l-type
8
l-type lectins
8
l-type lectin-like
8
early secretory
8
secretory pathway
8
pathway vipl
8
vip36
5
profile-based data
4
data base
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!