The cullin-containing ubiquitin-protein isopeptide ligases (E3s) play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. They have multisubunit modular structures in which substrate recognition and the catalysis of ubiquitination are carried out by distinct polypeptides. In a search for proteins involved in regulation of cullin-containing E3 ubiquitin ligases we immunopurified CUL4B-containing complex from HeLa cells and identified TIP120A as an associated protein by mass spectrometry. Immunoprecipitation of cullins revealed that all cullins tested specifically interacted with TIP120A. Reciprocal immunoaffinity purification of TIP120A confirmed the stable interaction of TIP120A with cullin family proteins. TIP120A formed a complex with CUL1 and Rbx1, but interfered with the binding of Skp1 and F-box proteins to CUL1. TIP120A greatly reduced the ubiquitination of phosphorylated IkappaBalpha by SCF(beta-TrCP) ubiquitin ligase. These results suggest that TIP120A functions as a negative regulator of SCF E3 ubiquitin ligases and may modulate other cullin ligases in a similar fashion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M213070200 | DOI Listing |
Mol Cell
May 2006
Department of Pathology and Laboratory Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA.
Damaged DNA binding proteins (DDBs) play a critical role in the initial recognition of UV-damaged DNA and mediate recruitment of nucleotide excision repair factors. Previous studies identified DDB2 as a target of the CUL-4A ubiquitin ligase. However, the biochemical mechanism governing DDB proteolysis and its underlying physiological function in the removal of UV-induced DNA damage are largely unknown.
View Article and Find Full Text PDFPlant Cell
July 2004
Department of Plant Biology, University of Minnesota, Twin Cities, St. Paul 55108, USA.
Auxin response in Arabidopsis thaliana requires the SCF(TIR1) ubiquitin ligase. In response to the hormone, SCF(TIR1) targets members of the auxin/indoleacetic acid (Aux/IAA) family of transcriptional regulators for ubiquitin-mediated proteolysis. To identify additional regulators of SCF(TIR1) activity, we conducted a genetic screen to isolate enhancers of the tir1-1 auxin response defect.
View Article and Find Full Text PDFFEBS Lett
April 2003
Department of Biochemistry, College of Science and Protein Network Research Center, Yonsei University, Seoul, South Korea.
The cullin-containing E3 ubiquitin ligases play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. We recently identified TIP120A as a cullin-interacting protein and found that TIP120A functions as a negative regulator of a ubiquitin ligase by interfering with the binding of Skp1 and an F box protein to CUL1. Here we show that TIP120A binds to the unneddylated CUL1 but not the neddylated one.
View Article and Find Full Text PDFJ Biol Chem
June 2003
Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
Ubiquitin-protein ligases (E3s) of the HECT family share a conserved catalytic region that is homologous to the E6-AP C terminus. The HECT domain defines a large E3 family, but only a handful of these enzymes have been defined with respect to substrate specificity or biological function. We showed previously that the C-terminal domain of one family member, KIAA10, catalyzes the assembly of polyubiquitin chains, whereas the N-terminal domain binds to proteasomes in vitro (You, J.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2003
Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
The SCF complex, which consists of the invariable components Skp1, Cul1, and Rbx1 as well as a variable F-box protein, functions as an E3 ubiquitin ligase. The mechanism by which the activity of this complex is regulated, however, has been unclear. The application of tandem affinity purification has now resulted in the identification of a novel Cul1-binding protein: TATA-binding protein-interacting protein 120A (TIP120A, also called CAND1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!