Aging is generally accompanied by reduced tolerance to oxidative stress and altered responsiveness to proliferative signals. We have shown that hepatocytes derived from aged rats (24-26 months) exhibit greater sensitivity to H(2)O(2) treatment and reduced proliferation following epidermal growth factor (EGF) treatment than cells of young adult rats (5-6 months). Here we examined the effects of aging and calorie restriction (CR) on expression of the oxidative stress-inducible and pro-apoptotic gene gadd153 (chop) in these hepatocytes, and we investigated its influence on sensitivity to oxidants. We show that aging was associated with elevated expression of gadd153, both basally and in response to H(2)O(2) treatment. CR, which attenuates age-associated declines in stress tolerance, prevented the age-related increase in gadd153 expression. EGF treatment also resulted in gadd153 induction in old cells. This effect was absent in young cells and in old cells of CR rats. gadd153 induction by EGF was reactive oxygen species-dependent and correlated with heightened sensitivity to subsequent H(2)O(2) treatment, suggesting that elevated Gadd153 contributes to the greater sensitivity of EGF-pretreated old cells to oxidative stress. Additional support for this hypothesis was provided by experiments with Rat1 fibroblasts in which conditional expression of Gadd153 conferred increased sensitivity to H(2)O(2). We propose a model whereby the diminished ability of old hepatocytes to overcome an EGF-triggered reactive oxygen species load leads to induction of the proapoptotic gene gadd153, which, in turn, sensitizes the cells to oxidant injury. Our findings point to gadd153 expression levels as an important factor in liver aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M300677200 | DOI Listing |
Sci Rep
January 2025
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
The development of efficient therapeutic strategies to promote ferroptotic cell death offers significant potential for hepatocellular carcinoma (HCC) treatment. Herein, this study presents an HCC-targeted nanoplatform that integrates bimetallic FeMoO nanoparticles with CO-releasing molecules, and further camouflaged with SP94 peptide-modified macrophage membrane for enhanced ferroptosis-driven multi-modal therapy of HCC. Leveraging the multi-enzyme activities of the multivalent metallic elements, the nanoplatform not only decomposes HO to generate oxygen and alleviate tumor hypoxia but also depletes glutathione to inactivate glutathione peroxides 4, which amplify sonodynamic therapy and ferroptotic tumor death under ultrasound (US) irradiation.
View Article and Find Full Text PDFBackground: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Gachon University, Seongnam, Gyeonggido, Korea, Republic of (South).
Background: Anethum graveolans commonly known as Dill is an herb from celery family displaying anti-oxidant benefits. The present study focused on the potential of Anethum graveolans as a multifunctional curative remedy for AD treatment.
Method: Hexane (H) and ethyl acetate (EA) extracts of Dill were prepared and subjected to GC-MS for identification of important bioactive components.
Phytother Res
January 2025
Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
Ischemia reperfusion-induced myocardial injury is a prominent pathological feature in patients with coronary artery disease, contributing to significant mortality and morbidity rates. Mangiferin (MGF), the main active ingredient extracted from Anemarrhena asphodeloides Bge, has anti-inflammatory, anti-oxidation, anti-diabetes, and anti-tumor effects. The present study confirmed that the GAS6/Axl pathway was identified as a promising novel target for the treatment of myocardial ischemia reperfusion (IR) injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!