Endothelial NO formation does not control myocardial O2 consumption in mouse heart.

Am J Physiol Heart Circ Physiol

Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Postfach 10 10 07, 40001 Düsseldorf, Germany.

Published: July 2003

To test whether endothelium-derived nitric oxide (NO) regulates mitochondrial respiration, NO was pharmacologically modulated in isolated mouse hearts, which were perfused at constant flow to sensitively detect small changes in myocardial O2 consumption (MVO2). Stimulation of NO formation by 10 microM bradykinin (BK) increased coronary venous nitrite release fivefold to 58 +/- 33 nM (n = 17). Vasodilatation by BK, adenosine (1 microM), or papaverine (10 microM) decreased perfusion pressure, left ventricular developed pressure (LVDP), and MVO2. In the presence of adenosine-induced vasodilatation, stimulation of endothelial NO synthesis by BK had no effect on LVDP and MVO2. Also, inhibition of NO formation by NG-monomethyl-l-arginine (l-NMMA, 100 microM) did not significantly alter LVDP and MVO2. Similarly, intracoronary infusion of authentic NO 2 microM were contractile dysfunction and MVO2 reduction observed. Because BK-induced stimulation of endothelial NO formation and basal NO are not sufficient to impair MVO2 in the saline-perfused mouse heart, a tonic control of the respiratory chain by endothelial NO is difficult to conceive.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00836.2002DOI Listing

Publication Analysis

Top Keywords

lvdp mvo2
12
endothelial formation
8
myocardial consumption
8
mouse heart
8
stimulation endothelial
8
mvo2
6
microm
5
endothelial
4
formation control
4
control myocardial
4

Similar Publications

In failing hearts, coronary flow is normal, but the coronary flow reserve (CFR) is reduced, so demand-induced ischemia (DII) may occur in response to greater demand for O(2). The objectives of this study were: (i) to verify that dobutamine stimulation produces DII in isolated rat hearts having, like failing hearts, increased left ventricular end-diastolic pressure (LVEDP) and hence reduced CFR and (ii) to study the effects of stimulation of glucose oxidation and of inhibition of fatty acid oxidation in this new model of DII. Isolated rat hearts perfused with 11 mM glucose and 0.

View Article and Find Full Text PDF

Purpose: We compared the negative chronotropic and inotropic effects of landiolol and esmolol, two clinically available short-acting beta1-blockers with high beta1-selectivity, using whole isolated rabbit heart preparations.

Methods: Tachycardia was induced by continuous perfusion of 10(-7) M isoproterenol, and we used concentrations of landiolol or esmolol in ascending steps (1 . 10(-6), 3 .

View Article and Find Full Text PDF

Temporal dynamics of inotropic, chronotropic, and metabolic responses during beta1- and beta2-AR stimulation in the isolated, perfused rat heart.

Am J Physiol Endocrinol Metab

September 2005

Nuclear Magnetic Resonance Unit, Laboratory of Clinical Investigation, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.

During the beta-adrenergic receptor (beta-AR)-mediated stress response in the heart, the relations between functional responses and metabolism are ill defined, with the distinction between beta1- and beta2-AR subtypes creating further complexity. Specific outstanding questions include the temporal relation between inotropic and chronotropic responses and their metabolic correlates. We sought to elucidate the relative magnitudes and temporal dynamics of the response to beta1- and beta2-AR stimulation and the energy expenditure and bioenergetic state related to these responses in the isolated perfused rat heart.

View Article and Find Full Text PDF

Background: Opioid peptides, which can induce mammalian hibernation, may provide protection against subcellular and molecular changes during hypothermic myocardial ischemia. This study examined the differential effects of the three known myocyte opioid receptors, Mu (micro), Delta (delta), and Kappa (kappa), in augmenting myocardial ischemic tolerance.

Methods: Control hearts (CH) were compared to hearts pretreated with either the micro-agonist, fentanyl, the delta-agonist, DADLE, or delta-antagonist, NTB, or the kappa-agonist, U50488H (U50), or kappa-antagonist, nor-BNI.

View Article and Find Full Text PDF

Background: Opioid preconditioning by exogenous opioids experimentally protects the myocardium against ischemia/reflow injury. Additionally, endogenous opioid peptides released during ischemia also enhance ischemic tolerance. Promiscuous opioid receptor agonists conceal the differential contribution of the mu, delta, and kappa opioid subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!