Objective: To study the mechanism of intimal hyperplasia after coronary artery bypass grafting (CABG) and to find an effective way for preventing intimal hyperplasia.
Methods: Twenty-four male New Zealand rabbits were randomly divided into two groups of 12 rabbits: operation group and sham-operation (control) group. The external jugular vein was harvested and anastomosed end-to-side to the ipsilateral carotid artery in operation group or grafted in situ in the control group. Six rabbits in each group were killed and their grafted veins were taken 2 weeks and 4 weeks after operation respectively. The mRNA expressions of transforming growth factor beta (TGF-beta), collagen I, collagen III, and angiotension 1 receptor (AT1R) were measured by RT-PCR and electrophoresis.
Results: The intimal hyperplasia was much more remarkable in the operation group than in the control group either 2 weeks or 4 weeks after operation. The mRNA expressions of TGF-beta, AT1R, collagen I, and collagen III were significantly higher in the operation group than in the control group, especially 2 weeks after (P < 0.01). Four weeks after the operation, the expressions of TGF-beta, AT1R, collagen I and collagen III were 4.05 +/- 0.49 vs 2.05 +/- 0.26, 18.23 +/- 1.32 vs 4.61 +/- 0.53, 80 +/- 0.17 vs 0.90 +/- 0.18, and 7.05 +/- 0.68 vs 2.80 +/- 0.17 respectively (all P < 0.05).
Conclusion: TGF-beta and AT1R may have an important role in the intimal hyperplasia of venous graft in CABG. Continuous arterial pressure may be the main factor of increased expression of TGF-beta and AT1R that cause the enormous synthesis and deposit of collagen.
Download full-text PDF |
Source |
---|
J Mater Chem B
January 2025
Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide, with incidence and mortality rates persistently climbing despite extensive research efforts. Innovative therapeutic approaches are still needed to extend patients' lives and preserve their health. In the present study, novel supramolecular nanomedicine with both nitric oxide (NO) and antioxidant releasing ability was developed to enhance therapeutic efficacy against vascular injuries.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
J Ethnopharmacol
December 2024
School of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, 300 Bachelor Road, Hanpu Science and Education Park, Yuelu District, 410208Changsha City, Hunan Province, China; Hunan Key Laboratory of Integrated Chinese and Western Medicine for Prevention and Treatment of Heart and Brain Diseases, 410208, Changsha, China. Electronic address:
Ethnopharmacological Relevance: Astragali Radix-Angelicae Sinensis Radix is an important traditional Chinese medicine used for the treatment of cardiovascular diseases. Our previous studies have shown that Astragali Radix-Angelicae Sinensis Radix can inhibit vascular intimal hyperplasia and improve the blood vessel wall's ECM deposition, among which six main active components can be absorbed into the blood, suggesting that these components may be the main pharmacodynamic substances of Astragali Radix-Angelicae Sinensis Radix against vascular intimal hyperplasia.
Aim Of The Study: A mouse model of atherosclerosis was used to study the relationship between the anti-intimal hyperplasia effect of Astragali Radix-Angelicae Sinensis Radix and the inhibition of VAF activation and ECM synthesis.
ACS Nano
January 2025
Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.
View Article and Find Full Text PDFVascular
December 2024
Department of Vascular Surgery, Xiamen Branch of Zhongshan Hospital, Fudan University, Xiamen, China.
Background: Endovascular recanalization with venous stenting is the preferred treatment for iliofemoral venous obstruction. We reviewed our institutional experience and mid-term outcomes with endovascular therapy for iliofemoral venous obstruction using the Venovo Self-expanding Venous Stent (BARD Peripheral Vascular, Inc., Tempe, AZ, USA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!