Trace amounts of cobalt and nickel in a water sample were quantitatively coprecipitated with scandium hydroxide at pH 8.0-10.5. Because the coprecipitant could be easily dissolved with 1 mol dm(-3) nitric acid, and the presence of up to 10 mg cm(-1) of scandium did not interfere with the graphite-furnace atomic absorption spectrometric determination of cobalt and nickel, the volume of the final solution prepared for the determination could be minimized down to 0.5 cm3. The concentration factor was 400-fold and the detection limits (signal to noise = 2) were 5.0 pg cm(-3) of cobalt and 10.0 pg cm(-3) of nickel in 200 cm3 of the initial sample solution. The 27 diverse ions investigated did not interfere with the determination in at least a 500-fold mass ratio to cobalt or nickel. The proposed method was successfully applied to the determination of trace amounts of cobalt and nickel in river-water samples.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.19.313DOI Listing

Publication Analysis

Top Keywords

cobalt nickel
20
determination cobalt
8
graphite-furnace atomic
8
atomic absorption
8
scandium hydroxide
8
trace amounts
8
amounts cobalt
8
nickel
6
determination
5
cobalt
5

Similar Publications

The main limitations of aqueous nickel-zinc batteries are their relatively low energy density and short cycle life, which are inextricably linked to the limitations of nickel-based cathodes. In this study, a low-crystallinity flower-like cobalt-doped nickel hydroxide (α-Ni(OH)-0.2Co) is constructed by hydrothermal reaction and employed as high-energy-density cathode for aqueous rechargeable nickel-zinc batteries.

View Article and Find Full Text PDF

Ultrahigh nickel cathode materials are widely utilized due to their outstanding energy and power densities. However, the presence of cobalt can cause significant lattice distortion during charge and discharge cycles, leading to the loss of active lithium, the formation of lattice cracks, and the emergence of a rock salt phase that hinders lithium-ion transport. Herein, we developed a novel cobalt-free, aluminum-doped cathode material, LiNiMnAlO (NMA), which effectively delays the harmful H2-H3 phase transition, reduces lattice distortion, alleviates stress release, and significantly enhances structural stability.

View Article and Find Full Text PDF

Background: The biopharmaceutical industry is increasingly interested in the analysis of trace metals due to their significant impact on product quality and drug safety. Certain metals can potentially accelerate the formation of degradants or aggregates in biotherapeutic proteins, leading to drug product quality concerns. A better understanding of metal-mAb interactions would aid in the development of purification processes and formulations, thereby ensuring better drug quality and safety.

View Article and Find Full Text PDF

Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based electrolyte is a promising alternative to liquid electrolytes in lithium metal batteries. However, its commercial application is limited by high crystallinity and low Li+ ion conductivity. In this study, we synthesized a fluorinated Li-based metal-organic framework (Li-MOF-F) and used it as a filler to address these limitations.

View Article and Find Full Text PDF

Contact allergy (CA) is a frequent condition in children; however, newer estimates of the prevalence of CA in children are lacking. Herein, we aim to provide an estimate of the prevalence of CA in children from 2010 to 2024. Two authors independently searched PubMed, Embase and Web of Science for studies reporting the prevalence of positive patch tests (PPTs) to allergens in populations including ≥ 100 children (< 18 years).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!