The spontaneously diabetic Goto-Kakizaki rat harbors the same defects expressed in human type 2 diabetes. It is not clear, however, whether stress factors emanating from the adrenal glands are involved in causing the diabetic state. For that reason, the authors studied gland size and expression of adenylyl cyclase isoforms in adrenal glands from Goto-Kakizaki and normal rats. Goto-Kakizaki rat adrenals were found to weigh only about half as much as those of control rats. This decrease was the result of a reduction of the cortex, especially of the zona fasciculata, whereas the medulla was unaffected. Cell density measurements showed that the total number of medullary cells in Goto-Kakizaki rats was lower than that in controls. In the cortex, the cell density did not differ between the two groups; thus, our results point to a marked hypotrophy. In the medulla of Goto-Kakizaki rats, the nuclear size was significantly increased, and there was also an overexpression of adenylyl cyclase 1, 2, 4, 6, and 8 isoforms in the adrenalin-producing cells, indicating an increased functional capacity. In the cortex, despite the cortical hypotrophy, adenylyl cyclase 5 immunoreactivity was markedly increased in Goto-Kakizaki rats, especially in the zona reticularis. It is unclear whether this morphologic change in the diabetic adrenal glands together with the overexpression of different adenylyl cyclase isoforms plays a role in the pathogenesis of this diabetic state or is a genetic defect or compensatory mechanism of diabetes in this spontaneous rodent model of type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00129039-200212000-00017 | DOI Listing |
J Exp Biol
January 2025
Department of Biological Sciences, University of Alberta, 116 St and 85 Ave, Edmonton, AB T6G 2R3, Canada.
Acidification is a key component of digestion throughout metazoans. The gut digestive fluid of many invertebrates is acidified by the vesicular-type H+-ATPase (VHA). In contrast, vertebrates generate acidic gut fluids using the gastric H+/K+-ATPase (HKA); an evolutionary innovation linked with the appearance of a true stomach that greatly improves digestion, absorption, and immune function.
View Article and Find Full Text PDFExp Mol Pathol
January 2025
Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:
Adenosine serves as a critical homeostatic regulator, exerting influence over physiological and pathological conditions in the cardiovascular system. During cellular stress, increased extracellular adenosine levels have been implicated in conferring cardioprotective effects through the activation of adenosine receptors with the A adenosine receptor subtype showing the highest expression in the heart. A adenosine receptor stimulation inhibits adenylyl cyclase activity via heterotrimeric G proteins, leading to the activation of distinct downstream effectors involved in cardiovascular homeostasis.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
OaPAC, the photoactivated adenylyl cyclase from , is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site.
View Article and Find Full Text PDFFunction (Oxf)
January 2025
Institute for Integrative Physiology, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL. 60637, USA.
Patients with obstructive sleep apnea (OSA) experience chronic intermittent hypoxia (CIH). OSA patients and CIH-treated rodents exhibit overactive sympathetic nervous system and hypertension, mediated through hyperactive carotid body (CB) chemoreflex. Activation of olfactory receptor 78 (Olfr78) by hydrogen sulfide (H2S) is implicated in CB activation and sympathetic nerve responses to CIH, but the downstream signaling pathways remain unknown.
View Article and Find Full Text PDFElife
January 2025
Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States.
The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!