A variety of heterologous mammalian cells were inoculated into nude mice and scored for tumorigenicity. The cells tested were from primary cell cultures, established cell lines of neoplastic origin, established cell lines of nontumor origin, and primary cell cultures transformed by oncogenic viruses. Regardless of the animal species of origin, every cell line that was tumorigenic in some other animal host and every cell line of neoplastic origin was tumorigenic in nude mice. Several tissue culture cells lines capable of indefinite growth in vitro failed to form tumors in nude mice, and the basis of this growth suppression was investigated. The findings suggest that the failure of an established cell line to form tumors in nude mice is an authentic response to host-mediated growth-regulatory signals.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nude mice
16
established cell
12
tissue culture
8
culture cells
8
primary cell
8
cell cultures
8
cell lines
8
neoplastic origin
8
form tumors
8
tumors nude
8

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Human cancer cells xenografts to assess the efficacy of granulysin-based therapeutics.

Methods Cell Biol

January 2025

Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain. Electronic address:

9-kDa Granulysin is a protein present in the granules of human activated cytotoxic T lymphocytes and natural killer cells. It has been shown to exert cytolytic activity against a wide variety of microbes: bacteria, fungi, yeast and protozoa. Recombinant isolated granulysin is also capable of inducing tumor cell death, so it could be used as an anti-tumor therapy.

View Article and Find Full Text PDF

Corynoline (COR) is an isoquinoline alkaloid derived from the traditional Chinese medicine Corydalis bungeana Turcz, known for its analgesic, antibacterial, neuroprotective, and osteoporosis-alleviating properties. However, its potential molecular effects against osteosarcoma (OS) remain unclear, warranting further investigation. This study demonstrated that COR inhibits OS cell proliferation and promotes apoptosis in a dose-dependent manner.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!