Magnetic X-ray absorption fine structure for Ni-Mn alloys.

J Synchrotron Radiat

Faculty of Science and Technology, Hirosaki University, Hirosaki Aomori, Japan.

Published: March 2003

Magnetic X-ray absorption fine-structure (XAFS) spectra have been measured for Ni-Mn alloys. The magnetic XAFS in the near-edge region (X-ray absorption near-edge structure, XANES) and X-ray magnetic circular dichroism (XMCD) of the Mn and Ni K-edge for Ni(1-x)Mn(x) (x = 0.25, 0.24 and 0.20) show that (i) the local magnetic structure around the Mn atom is quite different from that around the Ni atom, and (ii) the peak intensity in the magnetic XANES of the Mn K-edge depends on the magnetization of the sample in contrast to the Ni K-edge. The Mn K-edge magnetic EXAFS (extended XAFS) for Ni(0.76)Mn(0.24) is also measured. The second and fourth peaks in the Fourier transform are observed to be enhanced in comparison with the non-magnetic EXAFS, indicating that the second- and fourth-shell Ni atoms are replaced by Mn atoms due to heat treatment (atomic ordering). Semi-relativistic theoretical calculation explains the observed magnetic EXAFS.

Download full-text PDF

Source
http://dx.doi.org/10.1107/s0909049502022549DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
12
magnetic
8
magnetic x-ray
8
ni-mn alloys
8
alloys magnetic
8
magnetic exafs
8
absorption fine
4
fine structure
4
structure ni-mn
4
absorption fine-structure
4

Similar Publications

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Refining the Distinct Cu-N Coordination in Mesoporous N-Doped Carbon to Boost Selective Deuteration under Mild Conditions.

ACS Appl Mater Interfaces

January 2025

The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.

Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.

View Article and Find Full Text PDF

In this study, we investigate how modulating organic spacers in perovskites influences their X-ray detection performance and reveal the mechanism of low-dose detection with high sensitivity using femtosecond-transient absorption spectroscopy (fs-TAS). Particularly, we employ N,N,N',N'-tetramethyl-1,4-phenylenediammonium (TMPDA) and N,N-dimethylphenylene-p-diammonium (DPDA) as organic spacers to synthesize 2D perovskite single crystals (SCs). We find that DPDA-based SCs exhibit reduced interplanar spacing between inorganic layers, leading to increased lattice packing.

View Article and Find Full Text PDF

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

Reversible phase transition and tunable band gap in zinc telluride induced by acoustic shock exposure.

Dalton Trans

January 2025

Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Centre, Sacred Heart College, Tirupattur, affiliated to Thiruvalluvar University, Serkkadu, Tamil Nadu, 635 601, India.

In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!