Mapping of a conformational epitope on plasminogen activator inhibitor-1 by random mutagenesis. Implications for serpin function.

J Biol Chem

Department of Vascular Biology, The Holland Laboratory, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA.

Published: May 2003

The mechanism for the conversion of plasminogen activator inhibitor-1 (PAI-1) from the active to the latent conformation is not well understood. Recently, a monoclonal antibody, 33B8, was described that rapidly converts PAI-1 to the latent conformation (Verhamme, I., Kvassman, J. O., Day, D., Debrock, S., Vleugels, N., Declerck, P. J., and Shore, J. D. (1999) J. Biol. Chem. 274, 17511-17517). In an attempt to understand this interaction, and more broadly to understand the mechanism of the natural transition of PAI-1 to the latent conformation, we have used random mutagenesis to identify the 33B8 epitope in PAI-1. This site involves at least 8 amino acids scattered over more than two-thirds of the linear sequence that form a compact epitope on the PAI-1 three-dimensional structure. Surface plasmon resonance studies indicate a high affinity interaction between latent PAI-1 and 33B8 that is approximately 100-fold higher than comparable binding to active PAI-1. Structural modeling results together with surface plasmon resonance analysis of parental and site-directed PAI-1 mutants with disrupted 33B8 binding suggest the existence of a specific PAI-1 intermediate structure that is stabilized by 33B8 binding. These analyses strongly suggest that this intermediate form of PAI-1 has a partial insertion of the reactive center loop into beta-sheet A, and together, these data have significant implications for the general serpin mechanism of proteinase inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M208420200DOI Listing

Publication Analysis

Top Keywords

latent conformation
12
pai-1
10
plasminogen activator
8
activator inhibitor-1
8
random mutagenesis
8
pai-1 latent
8
epitope pai-1
8
surface plasmon
8
plasmon resonance
8
33b8 binding
8

Similar Publications

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.

View Article and Find Full Text PDF

Interferon types-I/II (IFN-αβ/γ) secretions are well-established antiviral host defenses. The human immunodeficiency virus (HIV) particles are known to prevail following targeted cellular interferon secretion. CD4 T-lymphocytes are the primary receptor targets for HIV entry, but the virus has been observed to hide (be latent) successfully in these cells through an alternate entry route via interactions with LFA1.

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

Allosteric regulation of ADAMTS13 (A Disintegrin And Metalloproteinase with ThromboSpondin type-1 motif, member 13) activity involves an interaction between its Spacer (S) and CUB1-2 domains to keep the enzyme in a closed, latent conformation. Monoclonal antibodies (mAb) uncouple the S-CUB interaction to open the ADAMTS13 conformation and thereby disrupt the global enzyme latency. The molecular mechanism behind this mAb-induced allostery remains poorly understood.

View Article and Find Full Text PDF

Rewriting Viral Fate: Epigenetic and Transcriptional Dynamics in KSHV Infection.

Viruses

November 2024

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!