The complex of porcine seminal plasma heterodimers I and II (PSP-I/PSP-II), which are heterodimers of glycosylated spermadhesins, is the major component of porcine seminal fluid. The proinflammatory and immunostimulatory activities of this spermadhesin complex suggest its participation in modulation of the uterine immune activity that may ensure reproductive success. Spermadhesin PSP-I/PSP-II induced the migration of neutrophils into the peritoneal cavity of rats via activation of resident cells. In the present study, we have investigated the involvement of macrophages and mast cells in the neutrophil chemotactic activity of PSP-I/PSP-II and the underlying mechanism. Macrophages and mast cells were isolated, cultured, and stimulated with purified PSP-I/PSP-II. Pharmacological modulation was performed using the glucocorticoid dexamethasone, indomethacin (cyclooxygenase inhibitor), MK886 (leukotriene inhibitor), and the supernatant of spermadhesin-stimulated mast cells. Macrophages stimulated with PSP-I/PSP-II released into the culture supernatant a neutrophil chemotactic substance. This activity was partly inhibited by both dexamethasone (85%) and the supernatant of spermadhesin-stimulated mast cells (74%) but not by indomethacin and MK886. An anti-tumor necrosis factor (TNF) alpha antibody neutralized (by 68%) the neutrophil chemotactic activity of PSP-I/PSP-II-stimulated macrophages. An anti-interleukin (IL)-4 antibody blocked the inhibitory activity of spermadhesin-stimulated mast cells on release of a neutrophil chemotactic substance by PSP-I/PSP-II-stimulated macrophages. As a whole, these data indicate that the neutrophil migration-inducing ability of spermadhesin PSP-I/PSP-II involves the release of the inflammatory cytokine TNFalpha by stimulated macrophages and that this activity is modulated by the lymphokine IL-4 liberated by mast cells. The balance between these two cytokines may control onset of the local inflammatory reaction, avoiding excessive neutrophil recruitment that would lead to tissue damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.102.013425 | DOI Listing |
Alzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: Recent genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified approximately 70 genetic loci linked to the disorder. The pivotal challenge in the post-GWAS era is dissecting the underlying causal variants and effector genes, a crucial step for effective therapeutic development. Most of these variants reside in non-coding regions of the genome, suggesting their regulatory role in distal gene expression.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China.
Background: Chronic kidney disease (CKD) represents a significant global public health challenge. This study aims to identify biomarkers of renal fibrosis and elucidate the relationship between unilateral ureteral obstruction (UUO), immune infiltration, and cell death.
Methods: Gene expression matrices for UUO were retrieved from the gene expression omnibus (GSE36496, GSE79443, GSE217650, and GSE217654).
Sci Rep
January 2025
Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China.
Osteoarthritis (OA) is a degenerative bone disease characterized by the destruction of joint cartilage and synovial inflammation, involving intricate immune regulation processes. Disulfidptosis, a novel form of programmed cell death, has recently been identified; however, the effects and roles of disulfidptosis-related genes (DR-DEGs) in OA remain unclear. We obtained six OA datasets from the GEO database, using four as training sets and two as validation sets.
View Article and Find Full Text PDFCardiovasc Pathol
January 2025
Department of Anatomical Sciences, St. George's University, School of Medicine, Grenada, West Indies; Department of Pathology, St. George's University, School of Medicine, Grenada, West Indies; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland. Electronic address:
Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
Cannabichromene (CBC) is one of the main cannabinoids found in the cannabis plant, and although less well known than tetrahydrocannabinol (THC) and cannabidiol (CBD), it is gaining attention for its potential therapeutic benefits. To date, CBC's known mechanisms of action include anti-inflammatory, analgesic, antidepressant, antimicrobial, neuroprotective, and anti-acne effects through TRP channel activation and the inhibition of inflammatory pathways, suggesting that it may have therapeutic potential in the treatment of inflammatory skin diseases, such as atopic dermatitis (AD), but its exact mechanism of action remains unclear. Therefore, in this study, we investigated the effects of CBC on Th2 cytokines along with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways involved in AD pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!