Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes.

Dev Biol

Department of Developmental Biology and Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, CA 94305-5327, USA.

Published: February 2003

AI Article Synopsis

  • Growth/differentiation factors 5, 6, and 7 (GDF5/6/7) are key proteins involved in the early stages of bone and joint formation during embryonic development, with GDF5 being one of the first markers for joint formation.
  • Mutations in the Gdf5 gene lead to specific skeletal defects, while mutations in Gdf6 result in different joint, ligament, and cartilage issues, revealing their unique roles in skeletal development.
  • Mice lacking Gdf5 and Gdf6 display severe skeletal abnormalities, indicating that these factors are essential for normal bone and joint formation, and their disruptions may relate to some human skeletal disorders.

Article Abstract

Growth/differentiation factors 5, 6, and 7 (GDF5/6/7) represent a distinct subgroup within the bone morphogenetic protein (BMP) family of secreted signaling molecules. Previous studies have shown that the Gdf5 gene is expressed in transverse stripes across developing skeletal elements and is one of the earliest known markers of joint formation during embryonic development. Although null mutations in this gene disrupt formation of some bones and joints in the skeleton, many sites are unaffected. Here, we show that the closely related family members Gdf6 and Gdf7 are expressed in different subsets of developing joints. Inactivation of the Gdf6 gene causes defects in joint, ligament, and cartilage formation at sites distinct from those seen in Gdf5 mutants, including the wrist and ankle, the middle ear, and the coronal suture between bones in the skull. Mice lacking both Gdf5 and Gdf6 show additional defects, including severe reduction or loss of some skeletal elements in the limb, additional fusions between skeletal structures, scoliosis, and altered cartilage in the intervertebral joints of the spinal column. These results show that members of the GDF5/6/7 subgroup are required for normal formation of bones and joints in the limbs, skull, and axial skeleton. The diverse effects on joint development and the different types of joints affected in the mutants suggest that members of the GDF family play a key role in establishing boundaries between many different skeletal elements during normal development. Some of the skeletal defects seen in single or double mutant mice resemble defects seen in human skeletal diseases, which suggests that these genes may be candidates that underlie some forms of carpal/tarsal coalition, conductive deafness, scoliosis, and craniosynostosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0012-1606(02)00022-2DOI Listing

Publication Analysis

Top Keywords

skeletal elements
12
single double
8
formation bones
8
bones joints
8
skeletal
7
defects
5
joints
5
multiple joint
4
joint skeletal
4
skeletal patterning
4

Similar Publications

The lower limb of Homo naledi presents a suite of primitive, derived and unique morphological features that pose interesting questions about the nature of bipedal movement in this species. The exceptional representation of all skeletal elements in H. naledi makes it an excellent candidate for biomechanical analysis of gait dynamics using modern kinematic software.

View Article and Find Full Text PDF

Myeloproliferative neoplasm-associated myelofibrosis is a clonal stem cell process characterized by pronounced bone marrow fibrosis associated with extramedullary hematopoiesis and splenomegaly. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment leading to bone marrow fibrosis regression. Here we provide an in-depth skeletal characterization of myelofibrosis patients before and after allo-HSCT utilizing clinical high-resolution imaging, laboratory analyses, and bone biopsy studies.

View Article and Find Full Text PDF

Loss of KAT6B causes premature ossification and promotes osteoblast differentiation during development.

Dev Biol

January 2025

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia. Electronic address:

The MYST family histone acetyltransferase gene, KAT6B (MYST4, MORF, QKF) is mutated in two distinct human congenital disorders characterised by intellectual disability, facial dysmorphogenesis and skeletal abnormalities; Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome and Genitopatellar syndrome. Despite its requirement in normal skeletal development, the cellular and transcriptional effects of KAT6B in skeletogenesis have not been thoroughly studied. Here, we show that germline deletion of the Kat6b gene in mice causes premature ossification in vivo, resulting in shortened craniofacial elements and increased bone density, as well as shortened tibias with an expanded pre-hypertrophic layer, as compared to wild type controls.

View Article and Find Full Text PDF

Genetic Correlations Among Dental, Mandibular, and Postcranial Dimensions in Rhesus Macaques (Macaca mulatta).

Am J Biol Anthropol

January 2025

Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, Oregon, USA.

Objectives: Tooth dimensions typically scale with mandibular and postcranial size in primates, although the exact pattern of scaling varies. This study assesses whether correlations by tissue type, anatomical region, or function (mastication or intrasexual competition) are present and could therefore act as evolutionary constraints on tooth-jaw-body size relationships by estimating genetic and phenotypic correlations between dental, mandibular, and postcranial dimensions in rhesus macaques (Macaca mulatta).

Materials And Methods: The teeth, mandibles, and postcrania of 362 adults from the Cayo Santiago skeletal collection were measured.

View Article and Find Full Text PDF

While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!