The effects of aging and activity on muscle blood flow.

Dyn Med

Department of Exercise Science, University of Georgia, Athens, GA 30602, USA.

Published: December 2002

Background: Our purpose was to determine if aging had an influence on muscle blood flow independent of habitual physical activity levels.

Methods: Blood flow was measured in the femoral artery by Doppler ultrasound after cuff occlusion of 10 minutes. Active and inactive older subjects (73 +/- 7 years) were compared to active and inactive young subjects (26 +/- 6 years).

Results: Peak blood flow capacity when normalized to lean muscle mass was related to activity level (p < 0.001), but not to age. Specifically, the young active group had higher peak blood flows than the young inactive (p = 0.031) or older inactive (p = 0.005) groups. Resting blood flow and conductance were not significantly different between groups. Mean arterial pressure was significantly higher in the older compared to young group (p = 0.002). Conductance was related to both activity (p = 0.002) and age (p = 0.003). A prolonged time for blood flow to recover was found in the older compared to the young group (p = 0.038) independent of activity status.

Conclusions: The prolonged recovery time in the older subjects may suggest a reduced vascular reactivity associated with increased cardiovascular disease risk. Peak blood flow capacity is maintained in older subjects by physical activity. In summary, maximal flow capacity and prolonged recovery of blood flow are influenced by different mechanisms in young and older active and inactive subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150384PMC
http://dx.doi.org/10.1186/1476-5918-1-2DOI Listing

Publication Analysis

Top Keywords

blood flow
32
active inactive
12
older subjects
12
peak blood
12
flow capacity
12
blood
9
flow
9
muscle blood
8
physical activity
8
subjects +/-
8

Similar Publications

Fluid administration is widely used to treat hypotension in patients undergoing veno-venous extracorporeal membrane oxygenation (VV-ECMO). However, excessive fluid administration may lead to fluid overload can aggravate acute respiratory distress syndrome (ARDS) and increase patient mortality, predicting fluid responsiveness is of great significance for VV-ECMO patients. This prospective single-center study was conducted in a medical intensive care unit (ICU) and finally included 51 VV-ECMO patients with ARDS in the prone position (PP).

View Article and Find Full Text PDF

Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma.

Nat Commun

December 2024

Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.

View Article and Find Full Text PDF

Neuromorphic-enabled video-activated cell sorting.

Nat Commun

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.

Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!