The influence of temperature on cytochrome c oxidase (CCO) catalytic activity was studied in the temperature range 240-308 K. Temperatures below 273 K required the inclusion of the osmolyte ethylene glycol. For steady-state activity between 278 and 308 K the activation energy was 12 kcal x mol-1; the molecular activity or turnover number was 12 s-1 at 280 K in the absence of ethylene glycol. CCO activity was studied between 240 and 277 K in the presence of ethylene glycol. The activation energy was 30 kcal x mol-1; the molecular activity was 1 s-1 at 280 K. Ethylene glycol inhibits CCO by lowering the activity of water. The rate limitation in electron transfer (ET) was not associated with ET into the CCO as cytochrome a was predominantly reduced in the aerobic steady state. The activity of CCO in flash-induced oxidation experiments was studied in the low temperature range in the presence of ethylene glycol. Flash photolysis of the reduced CO complex in the presence of oxygen resulted in three discernable processes. At 273 K the rate constants were 1500 s-1, 150 s-1 and 30 s-1 and these dropped to 220 s-1, 27 s-1 and 3 s-1 at 240 K. The activation energies were 5 kcal.mol-1, 7 kcal.mol-1, and 8 kcal.mol-1, respectively. The fastest rate we ascribe to the oxidation of cytochrome a3, the intermediate rate to cytochrome a oxidation and the slowest rate to the re-reduction of cytochrome a followed by its oxidation. There are two comparisons that are important: (a). with vs. without ethylene glycol and (b). steady state vs. flash-induced oxidation. When one makes these two comparisons it is clear that the CCO only senses the presence of osmolyte during the reductive portion of the catalytic cycle. In the present work that would mean after a flash-induced oxidation and the start of the next reduction/oxidation cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1432-1033.2003.03381.x | DOI Listing |
Chem Asian J
January 2025
Renmin University of China, Department of Chemistry, No 59 Zhongguancun St,, 100872, Beijing, CHINA.
The electroconversion of polyethylene terephthalate (PET) into C2 fine chemicals and hydrogen (H2) presents a promising solution for advancing the circular plastics economy. In this study, we report the electrooxidation of ethylene glycol (EG) to glycolic acid (GA) using a Pt-Ni(OH)2 catalyst, achieving a high Faraday efficiency (>90%) even at high current densities (250 mA cm-2 at 0.8 V vs.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.
The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China.
Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initial ECL reaction. The electrochemical characterizations confirm the loose structure of the assembled layer with the immune complex, providing an increase in the current and the resultant enhanced ECL emissions. Comparing the sensors with the rigid structure, a 34-fold increase in the maximal ECL emission is recorded when PEG3400 is used as a linker.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland.
Antimicrobial resistance is one of the drastically increasing major global health threats due to the misuse and overuse of antibiotics as traditional antimicrobial agents, which render urgent the need for alternative and safer antimicrobial agents, such as essential oils (EOs). Although the strong antimicrobial activity of various EOs has already been studied and revealed, their characteristic high sensitivity and volatility drives the need towards a more efficient drug administration method via a biomaterial system. Herein, the potential of EO incorporated in functionalized antibacterial collagen hydrogels was investigated.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States.
Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!