Human mesenchymal stem cells (hMSCs) derived from bone marrow have the capacity to differentiate along a number of connective tissue pathways and are an attractive source of chondrocyte precursor cells. When these cells are cultured in a three-dimensional format in the presence of transforming growth factor-beta, they undergo characteristic morphological changes concurrent with deposition of cartilaginous extracellular matrix (ECM). In this study, factors influencing hMSC chondrogenesis were investigated using an alginate layer culture system. Application of this system resulted in a more homogeneous and rapid synthesis of cartilaginous ECM than did micromass cultures and presented a more functional format than did alginate bead cultures. Differentiation was found to be dependent on initial cell seeding density and was interrelated to cellular proliferation. Maximal glycosaminoglycan (GAG) synthesis defined an optimal hMSC seeding density for chondrogenesis at 25 x 10(6) cells/ml. Inclusion of hyaluronan in the alginate layer at the initiation of cultures enhanced chondrogenic differentiation in a dose-dependent manner, with maximal effect seen at 100 microg/ml. Hyaluronan increased GAG synthesis at early time points, with greater effect seen at lower cell densities, signifying cell-cell contact involvement. This culture system offers additional opportunities for elucidating conditions influencing chondrogenesis and for modeling cartilage homeostasis or osteoarthritic changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1290/1071-2690(2002)038<0457:cdohms>2.0.co;2 | DOI Listing |
Int J Biol Macromol
January 2025
School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, PR China. Electronic address:
Hypertrophic scar (HS) is a disease with excessive skin fibrosis and collagen disorder, which is generally caused by abnormal wound repair process after burn and trauma. Although intralesional injection of 5-fluorouracil (5-Fu) has been used in clinical treatment of HS, the patients' compliance of injection treatment is poor. In this study, a double-layer dissolution microneedle (MN) containing asiaticoside (AS) and 5-Fu was designed for the treatment of HS.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFBioeng Transl Med
January 2025
Department of Chemical and Biomolecular Engineering Yonsei University Seoul South Korea.
This study presents a novel in vitro bilayer 3D co-culture platform designed to obtain cancer-associated fibroblasts (CAFs)-like cells. The platform consists of a bilayer hydrogel structure with a collagen/polyethylene glycol (PEG) hydrogel for fibroblasts as the upper layer and an alginate hydrogel for tumor cells as the lower layer. The platform enabled paracrine interactions between fibroblasts and cancer cells, which allowed for selective retrieval of activated fibroblasts through collagenase treatment for further study.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Xiamen Meijiamei New Material Technology Co., Ltd., Xiamen 361110, PR China. Electronic address:
Natural polymer based food packaging has attracted more and more attention, but the lack of active functions of natural polymer hinders its application in the field of active packaging. In this study, chlorogenic acid carbon dots (CGA-CDs) was synthesized mildly using natural plant polyphenol CGA as carbon source, and CGA functionalized layered clays (LDHs@CGA) was introduced as reinforcing agent. Alg active films were fabricated by solution casting method using natural polysaccharide-alginate (Alg), CGA-CDs and LDHs@CGA.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, College of materials science and engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
In this experiment, we studied a technique that permits the continuous fabrication of electrochromic alginate fibers because there hasn't been much research on electrochromic alginate fibers. Therefore, it's important to investigate ways to increase the application areas of alginate fibers. AgNP‑calcium alginate fibers with high electrical conductivity were prepared by Ag substitution method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!