A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. | LitMetric

Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand.

Proc Natl Acad Sci U S A

Center for Blood Research and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

Published: March 2003

The affinity of the extracellular domain of integrins for ligand is regulated by conformational changes signaled from the cytoplasm. Alternative types of conformational movement in the ligand-binding headpiece have been proposed. In one study, electron micrograph image averages of the headpiece of integrin aV beta 3 show two different conformations. The open conformation of the headpiece is present when a ligand mimetic peptide is bound and differs from the closed conformation in the presence of an obtuse angle between the beta 3 subunit hybrid and I-like domains. We tested the hypothesis that opening of the hybrid-I-like domain interface increases ligand-binding affinity by mutationally introducing an N-glycosylation site into it. Both beta 3 and beta1 integrin glycan wedge mutants exhibit constitutively high affinity for physiological ligands. The data uniquely support one model of integrin activation and suggest that movement at the interface with the hybrid domain pulls down the C-terminal helix of the I-like domain and activates its metal ion-dependent adhesion site, analogously to activation of the integrin I domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151353PMC
http://dx.doi.org/10.1073/pnas.0438060100DOI Listing

Publication Analysis

Top Keywords

open conformation
8
glycan wedge
8
integrin
5
domain
5
stabilizing open
4
conformation integrin
4
headpiece
4
integrin headpiece
4
headpiece glycan
4
wedge increases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!