The objective was to investigate the potential role of the oocyte in modulating proliferation and basal, FSH-induced and insulin-like growth factor (IGF)-induced secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E(2)), and progesterone (P(4)) by mural bovine granulosa cells. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin and androstenedione, and the effects of ovine FSH and IGF analogue (LR3-IGF-1) were tested alone and in the presence of denuded bovine oocytes (2, 8, or 20 per well). Medium was changed every 48 h, cultures were terminated after 144 h, and viable cell number was determined. Results are based on combined data from four independent cultures and are presented for the last time period only when responses were maximal. Both FSH and IGF increased (P < 0.001) secretion of inh A, act A, FS, E(2), and P(4) and raised cell number. In the absence of FSH or IGF, coculture with oocytes had no effect on any of the measured hormones, although cell number was increased up to 1.8-fold (P < 0.0001). Addition of oocytes to FSH-stimulated cells dose-dependently suppressed (P < 0.0001) inh A (6-fold maximum suppression), act A (5.5-fold), FS (3.6-fold), E(2) (4.6-fold), and P(4) (2.4-fold), with suppression increasing with FSH dose. Likewise, oocytes suppressed (P < 0.001) IGF-induced secretion of inh A, act A, FS, and E(2) (P < 0.05) but enhanced IGF-induced P(4) secretion (1.7-fold; P < 0.05). Given the similarity of these oocyte-mediated actions to those we observed previously following epidermal growth factor (EGF) treatment, we used immunocytochemistry to determine whether bovine oocytes express EGF or transforming growth factor (TGF) alpha. Intense staining with TGFalpha antibody (but not with EGF antibody) was detected in oocytes both before and after coculture. Experiments involving addition of TGFalpha to granulosa cells confirmed that the peptide mimicked the effects of oocytes on cell proliferation and on FSH- and IGF-induced hormone secretion. These experiments indicate that bovine oocytes secrete a factor(s) capable of modulating granulosa cell proliferation and responsiveness to FSH and IGF in terms of steroidogenesis and production of inhibin-related peptides, bovine oocytes express TGFalpha but not EGF, and TGFalpha is a prime candidate for mediating the actions of oocytes on bovine granulosa cells.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.102.008698DOI Listing

Publication Analysis

Top Keywords

granulosa cells
16
growth factor
16
fsh igf
16
bovine oocytes
16
bovine granulosa
12
igf-induced secretion
12
cell number
12
oocytes
10
insulin-like growth
8
transforming growth
8

Similar Publications

Oocyte/zygote/embryo maturation arrest: a clinical study expanding the phenotype of NOBOX variants.

J Assist Reprod Genet

January 2025

Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.

Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.

View Article and Find Full Text PDF

Dietary Advanced Glycation End Products and Superovulation with Gonadotropins Alters RAGE expression in the Ovaries Differently at Each Follicular Stage of Development.

Mol Cell Endocrinol

January 2025

Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Reproductive Medicine Associates of New York, Department of Obstetrics, Gynecology and Reproductive Science, Division of Reproductive Endocrinology and Infertility, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

The purpose of this study was to examine the deposition of advanced glycation end products (AGEs) and their receptors, RAGE, in ovarian follicles during folliculogenesis in mice fed high (H-AGE) or low (L-AGE) AGE diets and following superovulation with gonadotropins. We hypothesize that H-AGE diet is associated with increased AGE deposition and RAGE expression in various stages of ovarian follicular development, and superovulation with gonadotropins may alter these changes. C57BL/6J mice were fed low L-AGE (n=10) or H-AGE (n=10) diet for 12 weeks.

View Article and Find Full Text PDF

Heat stress negatively affects the reproductive function of in animals and humans. Although a relationship between heat and oxidative stress has been suggested, the underlying mechanism has not been sufficiently examined in reproduction-related cells. Therefore, we aimed to investigate whether heat stress induces oxidative stress using a variety of reproduction-related cells including bovine placental and cumulus-granulosa cells, human cell lines derived from cervical and endometrial cancers, and fibroblasts derived from endometrium.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!