A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of RGS2 and type V adenylyl cyclase interaction sites. | LitMetric

Identification of RGS2 and type V adenylyl cyclase interaction sites.

J Biol Chem

Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.

Published: May 2003

The production of cAMP is controlled on many levels, notably at the level of cAMP synthesis by the enzyme adenylyl cyclase. We have recently identified a new regulator of adenylyl cyclase activity, RGS2, which decreases cAMP accumulation when overexpressed in HEK293 cells and inhibits the in vitro activity of types III, V, and VI adenylyl cyclase. In addition, RGS2 blocking antibodies lead to elevated cAMP levels in olfactory neurons. Here we examine the nature of the interaction between RGS2 and type V adenylyl cyclase. In HEK293 cells expressing type V adenylyl cyclase, RGS2 inhibited Galpha(s)-Q227L- or beta(2)-adrenergic receptor-stimulated cAMP accumulation. Deletion of the N-terminal 19 amino acids of RGS2 abolished its ability to inhibit cAMP accumulation and to bind adenylyl cyclase. Further mutational analysis indicated that neither the C terminus, RGS GAP activity, nor the RGS box domain is required for inhibition of adenylyl cyclase. Alanine scanning of the N-terminal amino acids of RGS2 identified three residues responsible for the inhibitory function of RGS2. Furthermore, we show that RGS2 interacts directly with the C(1) but not the C(2) domain of type V adenylyl cyclase and that the inhibition by RGS2 is independent of inhibition by Galpha(i). These results provide clear evidence for functional effects of RGS2 on adenylyl cyclase activity that adds a new dimension to an intricate signaling network.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M210663200DOI Listing

Publication Analysis

Top Keywords

adenylyl cyclase
40
type adenylyl
16
camp accumulation
12
adenylyl
10
cyclase
10
rgs2
10
rgs2 type
8
cyclase activity
8
hek293 cells
8
n-terminal amino
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!