Soy-protein isolate (SPI) enhances liver cell damage in Long-Evans rats with a cinnamon-like coat color (LEC rats), which have a defect in Atp7b, the Wilson disease gene. Animals administered an SPI-diet from an age of six weeks died significantly earlier than those administered a control-diet, AIN-93G, from severe liver cell damage associated with jaundice. Since the liver copper level was higher with the SPI-diet than the control-diet, one of the reasons for SPI-toxicity to LEC rats might be due to the higher uptake of copper into liver cells. In the present study, liver levels of glutathione, and liver and intestinal mRNA and protein levels were determined for metallothionein, MT-1 and MT-2. Furthermore, liver and intestinal mRNA expression for the high affinity copper transporter, Ctr1, was determined. None of the parameters showed any significant differences between the SPI-diet and control-diet groups, except for Ctr1 mRNA levels in the liver. It is thus suggested that SPI enhances liver cell copper uptake through induction of Ctr1 expression and this might be the mechanism underlying increased liver damage in LEC rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(03)00159-1DOI Listing

Publication Analysis

Top Keywords

lec rats
16
liver cell
16
cell damage
12
liver
11
wilson disease
8
spi enhances
8
enhances liver
8
spi-diet control-diet
8
liver intestinal
8
intestinal mrna
8

Similar Publications

Episodic memory involves the processing of spatial and temporal aspects of personal experiences. The lateral entorhinal cortex (LEC) plays an essential role in subserving memory. However, the mechanisms by which LEC integrates spatial and temporal information remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Cataracts are the leading cause of blindness globally and can only be treated effectively with surgery, which carries some risks.
  • The study investigates the role of SIRT1 in cataract formation, revealing that exposure to shortwave blue light (SWBL) induces oxidative stress and promotes cell death in lens epithelial cells.
  • By enhancing SIRT1 expression, researchers found that it could counteract the damaging effects of SWBL and potentially provide new strategies for preventing and treating cataracts.
View Article and Find Full Text PDF

Cataracts are characterized as a disease affecting lens opacity. Endoplasmic reticulum (ER) stress can cause lens epithelial cell (LEC) dysfunction, affecting normal lens transparency and function, but the role of Tribbles 3 (TRB3), an inducible gene of ER stress, in cataracts is poorly understood. This study explored how TRB3 promotes cataract progression through ER stress.

View Article and Find Full Text PDF

Our study mainly analyzed the mechanism of C/EBP homologous protein (CHOP) and its interacting protein Nupr1 on endoplasmic reticulum stress (ERS) induced lens epithelial cells (LEC) apoptosis. Cell proliferation was detected by CCK-8. Apoptosis was detected by flow cytometry and TUNEL.

View Article and Find Full Text PDF

Episodic memory involves the processing of spatial and temporal aspects of personal experiences. The lateral entorhinal cortex (LEC) plays an essential role in subserving memory. However, the specific mechanism by which LEC integrates spatial and temporal information remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!