Optimization of an animal model of experimental autoimmune encephalomyelitis achieved with a multiple MOG(35-55)peptide in C57BL6/J strain of mice.

J Autoimmun

INSERM U-519 and IFRMP 23, Faculté de Médecine et de Pharmacie, 22 Boulevard Gambetta, F-76183 Rouen Cedex 1, France.

Published: February 2003

The severity of the experimental autoimmune encephalomyelitis (EAE) induced by peptide myelin oligodendrocyte glycoprotein(35-55)(pMOG(35-55)) is thought to be predominantly influenced by the major histocompatibility complex (MHC), so that C57BL6/J mice, on H2(b) strain, were only mildly sick. However, it remains unclear as to how non-MHC gene regions affect EAE. To determine whether the immunization protocol could have an influence on clinical signs, C57BL6/J mice were immunized with a multiple antigen peptide (MAP) containing eight pMOG(35-55)branches synthesized directly onto a lysine core, myelin oligodendrocyte glycoprotein (35-55)-multiple antigen peptide (MOG(35-55)-MAP), in complete Freund's adjuvant (CFA). In most of the mice, clinical onset (marked weakness) occurred approximately at day 15. All mice injected with MOG(35-55)-MAP had more severe symptoms than those injected with pMOG(35-55), which developed no leg paralysis. All MOG(35-55)-MAP-immunized mice developed EAE symptoms, but 50% had primary-progressive EAE, while the other 50% had relapsing-remitting disease. Leukocyte infiltrations, associated with increased glial fibrillary acidic protein (GFAP) expression by reactive astrocytes, were observed around the lateral ventricles and blood vessels in the brain. Significant positive correlations were established between anti-MOG(35-55)antibody levels and clinical scores or GFAP positivity in the spinal cord. The heterogeneity of EAE progression, observed in these genetically identical individuals, suggests that the environment rather than the genetics plays a role. This observation is highly pertinent as it corresponds to what is seen in clinical MS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-8411(02)00108-7DOI Listing

Publication Analysis

Top Keywords

experimental autoimmune
8
autoimmune encephalomyelitis
8
myelin oligodendrocyte
8
c57bl6/j mice
8
antigen peptide
8
mice
6
eae
5
optimization animal
4
animal model
4
model experimental
4

Similar Publications

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

Boosting human immunology: harnessing the potential of immune organoids.

EMBO Mol Med

January 2025

Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.

Studying the human immune system in vivo is challenging and often not possible. Therefore, most human immunology studies have been predominantly confined to peripheral blood analyses, which by themselves have inherent limitations, as many immune reactions take place within tissues. For example, potent antibody responses that contribute to fighting infections and provide protection following vaccination require cellular interactions between B cells and T cells in specialized micro-anatomical structures called germinal centers, which are found in secondary lymphoid organs such as spleen, lymph nodes, and tonsils.

View Article and Find Full Text PDF

Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.

View Article and Find Full Text PDF

Active Ingredients and Potential Mechanism of Additive Sishen Decoction in Treating Rheumatoid Arthritis with Network Pharmacology and Molecular Dynamics Simulation and Experimental Verification.

Drug Des Devel Ther

January 2025

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People's Republic of China.

Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear.

Methods: To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!